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Effects of Moisture Content on Supply 

 Costs and CO2 Emissions for an Optimized 
Energy Wood Supply Network
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Abstract

The supply of wood for energy is challenging due to high supply costs and rapidly increasing 
demand. As an important quality criterion, moisture content (MC) influences the revenues, 
demand and supply costs. For transport, the limiting factor is payload, if the MC is high.
The effects of MC on costs and greenhouse gas (GHG) emissions for an optimized supply 
network have been analyzed using a previously developed multi-criteria optimization model 
by using different MCs in the range from 50 to 20%. The weighted sum scalarization approach 
was used to derive Pareto optimal points by changing weights stepwise from maximum prof-
it to minimal GHG on a relatively large scale network of 356 storage locations, 119 freight 
stations and 228 plants.
A decrease of 10% in MC from 40 to 30% will double the profit from 5.10 to 12.00 EUR × t–1. 
In the case of MC independent revenues, the sensitivity of the model is lower but clearly visible, 
with a profit increase from 6.00 EUR × t–1 at the MC of 40% to 10.00 EUR × t–1 at the MC of 
30%. As expected, emissions will decrease with a decreasing MC. However, the effect on emis-
sions is less prominent than the effect on profit. Reducing MC from 40 to 30% will save ap-
proximately 4% of the GHG per dry t.

Keywords: supply network, moisture content, forest biomass, chips, transport, multi-objective 
optimization

In	contrast	to	other	timber	products,	the	quality	of	
the	product,	expressed	by	a	higher	calorific	value,	can	
be	increased	through	storage	for	the	energy	supply	
(Brand	et	al.	2011).	During	storage,	natural	drying	re-
duces	the	moisture	content	(MC),	which	leads	directly	
to	a	higher	calorific	value.	However,	depending	on	
material	type	and	weather	conditions,	different	results	
have	been	obtained	during	precise	measurement	of	
natural	drying	(Erber	et	al.	2014;	Routa	et	al.	2015).	
Supply	and	demand	fluctuate	between	heating	and	
non-heating	season.	To	balance	supply	and	demand	
and	to	enhance	the	fuel	quality,	storage	of	wood	to	be	
used	for	energy	is	preferable	in	most	cases.
Suitable	storage	or	terminal	locations	within	a	sup-

ply	network	for	energy	wood	can	be	determined	with	
different	approaches,	where	mathematical	optimiza-

1. Introduction
The	European	Union	(EU)	has	set	an	ambitious	

target	for	renewables	to	represent	20%	of	the	overall	
energy	supply	by	2020	(EU,	2009).	Based	on	the	initial	
position	of	a	country,	various	targets	were	set.	In	Aus-
tria,	 34%	of	 the	energy	 in	gross	final	 consumption	
should	 originate	 from	 renewable	 sources	 by	 2020.	
Limits	for	greenhouse	gas	(GHG)	emissions	were	also	
set.	Additionally,	the	Energy	Efficiency	Plan	2011	aims	
to	 decrease	 energy	 consumption	 by	 20%	 by	 2020	
through	increasing	the	energy	efficiency	at	all	stages	
of	the	energy	supply	chain	(EU,	2012).
The	replacement	of	fossil	fuels	by	forest	biomass	

should	help	to	mitigate	GHG.	However,	the	supply	of	
wood	for	energy	is	challenging	due	to	high	supply	
costs	and	rapidly	increasing	demand.
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tion	is	often	applied.	Driven	by	the	need	to	make	it	
more	economical,	research	started	to	focus	on	biomass	
supply	over	the	last	decade.	The	number	of	research	
papers	dealing	with	biomass	supply	chain	models	is	
rising	exponentially,	with	linear-,	integer-,	mixed	inte-
ger-,	 and	 nonlinear	 programming,	 heuristics	 and	
multi-criteria	decision	analysis	as	common	methods	
(Meyer	et	al.,	2014).	Examples	of	strategic	supply	chain	
optimization	models	can	be	found	in	Gunnarsson	and	
Rönnqvist	(2008),	D’Amours	et	al.	(2008)	or	Flisberg	et	
al.	(2012)	and	for	operational	optimization,	such	as	
truck	routing	and	scheduling,	in	Flisberg	et	al.	(2012),	
Hirsch	(2011)	or	Oberscheider	et	al.	(2013).	Zamora-
Cristales	et	al.	(2015)	used	a	simulation	model	to	cal-
culate	 costs	 for	different	 supply	chains	on	 the	pile	
level	and	used	the	results	as	input	for	a	mixed	integer	
optimization	model	to	select	the	best	supply	options.
Of	course,	most	of	the	optimization	studies	focus	

on	economics.	However,	there	is	an	increasing	interest	
in	optimization	of	supply	chain	sustainability,	taking	
into	account	the	three	dimensions	of	economy,	envi-
ronment	and	social	issues	(Eskandarpour	et	al.	2015).	
Especially	for	the	biomass	supply,	environmental	im-
pacts	 such	as	GHGs	 are	of	 interest	 and	need	 to	be	
minimized.
The	impact	of	moisture	content	on	supply	costs	

and	emissions	for	an	energy	wood	supply	network	has	
not	been	studied	extensively.	For	example,	Acuna	et	
al.	(2012)	developed	a	multi-period	optimization	mod-
el	to	analyze	the	effect	of	MC	on	storage,	chipping	and	
transport	for	three	different	supply	chains	over	a	two-
year	period	delivering	forest	energy	to	a	single	plant.	
Results	show	that	proper	storage	and	drying	results	
in	saving	33%	of	the	harvested	volume.
Sosa	et	al.	(2015)	applied	a	quite	similar	optimiza-

tion	model	in	an	Irish	case	study.	Interestingly,	a	con-
straining MC	for	delivered	material	led	to	higher	costs	
compared	to	an	unconstrained	MC	scenario	due	to	the	
higher	transport	distance	to	gather	only	material	with	
lower	MC.
Changing	moisture	content	has	an	impact	on	the	

whole	supply	chain.	To	investigate	the	effect	of	MC on 
supply	costs	and	emissions	for	an	energy	supply	net-
work,	the	multi-objective	mixed	integer	optimization	
model	presented	in	Kanzian	et	al.	(2013)	was	extended.	
The	model	considers	two	objectives:	the	first	is	to	max-
imize	the	profit,	and	the	second	is	to	minimize	CO2 
emissions.	By	employing	the	weighted	sum	scalariza-
tion	approach	(Ehrgott	2000),	where	the	sum	of	two	
scaled	objectives	has	to	be	minimized,	Pareto	optimal	
solutions	for	different	weighting	combinations	were	
determined.	Staying	on	the	one	hand	within	the	forest	
resource	limit	and	on	the	other	hand	fulfilling	the	de-

mand	is	done	by	constraints.	Using	flow	and	capacity	
constraints	for	the	terminals	and	shipping	stations	en-
sured	that	flow	over	terminals	 is	kept	within	given	
limits.	To	reduce	chipper	movement	and	prevent	trans-
port	capacity	underutilization,	forest	resource	points	
(road	 side	 storage)	were	 either	 classified	 »material	
dedicated	to	chipping«	or	»material	not	dedicated	to	
chipping«.	Thus,	splitting	of	a	resource	point	material	
into	two	different	transport	forms	was	avoided.	As	case	
studies	have	shown,	demand	and	resources	do	not	al-
ways	meet.	Based	on	these	experiences,	three	condi-
tional	model	constraints	were	added	to	enhance	the	
model	robustness	in	the	case	of	limited	resources.	A	
total	of	90%	of	the	resources	should	be	allocated	to	de-
mand	points	and	at	least	50%	of	each	demand	must	be	
fulfilled.	Detailed	information	on	the	model	formula-
tions	is	provided	in	Kanzian	et	al.	(2013).	For	the	study,	
the MC	has	been	assumed	to	be	constantly	at	an	aver-
age	of	37.5%	at	first.	In	a	further	setup,	to	figure	out	the	
sensitivity	on	the	given	supply	network,	different	MCs 
will	be	added	as	additional	model	parameter.	Different	
sensitivity	analyses	were	carried	out	to	determine	and	
show	the	impact	of	this	parameter.

2. Materials and methods

2.1 Supply chain assumptions
As	in	Kanzian	et	al.	(2013),	five	different	supply	

chains	have	been	considered	in	the	study	(Fig.	1).	Each	
chain	starts	at	 the	 forest	 road	after	harvesting.	De-
pending	on	the	chipping	location,	different	types	of	
materials	need	to	be	transported.
Supply	chain	1	(SC	1):	Energy	wood	is	chipped	di-

rectly	at	the	forest	road	or	landing	and	transported,	
chipped,	to	the	plant	by	trucks.

Fig. 1 Supply chains considered in the optimization model
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Supply	chain	2	(SC	2):	Log	trucks	transport	un-
chipped	material	 directly	 to	 the	 plant,	where	 it	 is	
chipped.
Supply	chain	3	(SC	3):	Log	trucks	transport	un-

chipped	material	 to	 an	 intermediate	 storage	 area,	
where	it	is	chipped	directly	onto	trucks	and	then	trans-
ported	to	the	plant	after	seasoning.
Supply	chain	4	(SC	4):	Energy	wood	is	chipped	at	

the	forest	road	and	transported	to	and	unloaded	at	an	
intermediate	storage	area.	The	chips	are	later	loaded	
onto	trucks	again	and	transported	to	the	plant.
Supply	chain	5	(SC	5):	Log	trucks	transport	the	un-

chipped	material	to	a	storage	area	for	seasoning.	After	
seasoning,	log	trucks	transport	the	unchipped	mate-
rial	to	the	plant	for	chipping.
Supply	chain	5a	(SC	5a):	Log	trucks	transport	the	

unchipped	material	to	a	shipping	station	and	load	the	
unchipped	material	onto	wagons.	The	material	is	tak-
en	to	the	plant	by	railroad	for	chipping.

2.2 Mathematical model parameters and mois-
ture content
To	optimize	the	selected	supply	chains,	the	param-

eter	calculation	in	the	model	code	from	Kanzian	et	al.	
(2013)	was	reworked	to	enable	studying	changes	in	
MC.	To	enhance	 the	model	flexibility	and	facilitate	
studying	the	model	sensitivity,	cost	and	emission	data	
calculations	were	implemented	in	the	model	code.	The	
MC	of	the	energy	wood	mainly	influences	demand,	
transport	costs	and	revenues.	The	lower	the	MC,	the	
lower	the	demand	will	be,	due	to	the	higher	heating	
value	of	the	wood.	Furthermore,	most	pricing	schemes	
for	energy	wood	depend	on	the	MC	of	the	delivered	
material.	The	higher	the	MC,	the	lower	the	price	will	
be.
The	revenues	at	the	plant	for	solid	and	chipped	

material	originate	from	a	tariff	list	of	the	biggest	plant	
within	the	testing	area,	which	considers	the	MC	for	
pricing.	Other	pricing	data	were	not	available	and	
thus,	this	list	was	assumed	to	be	representative	for	the	
study	area.	Based	on	this	list,	using	regression	analy-
sis,	functions	for	predicting	the	revenue	at	a	given	MC 
have	been	generated	(1–2).

 2
j,k 0 60.273 36.105 99.415r MC MC= = + −  (1)

 2
j,k 1 81.346 30.558 86.271r MC MC= = + −  (2)

Road	transport	costs	per	entity	(cijk)	depend	on	time	
associated	with	transport,	loading,	unloading	and	op-
erational	delays.	Time	consumption	for	driving	emp-
ty	and	loaded	was	assumed	to	be	equal.	Total	trans-
port	time	is	multiplied	by	the	hourly	costs,	and	road	

charges	are	added.	Finally,	the	costs	for	one	trip	are	
multiplied	by	the	number	of	trips	needed	for	complet-
ing	the	job	and	then	divided	by	the	volume	per	re-
source	point	to	determine	the	costs	per	entity (3).	The	
number	of	trips	(nik)	was	determined	by	dividing	the	
volume	per	resource	point	and	the	payload	(lvk).	This	
number	was	then	rounded	up	to	the	next	integer,	as	
there	is	always	one	truck	trip	needed,	regardless	of	the	
amount	transported	(4).
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The	transport	capacity	of	trucks	and	wagons	is	lim-
ited	by	either	maximum	payload	 (tons)	or	volume	
(m³).	Load	limits	for	the	truck	and	trailer	used	in	the	
analysis	can	be	 found	in	Table	2.	To	determine	the	
maximum	payload	at	a	given	MC,	a	simple	routine	
was	devised	for	checking	whether	the	payload	or	the	
volume	was	the	limiting	value.	The	conversion	factor	
from	m³	loose	to	dry	ton	was	set	at	5.26	based	on	an	
average	wood	density	of	475	kg	m–3	and	a	bulking	fac-
tor	of	2.5	from	solid	to	chipped	wood.
Time	consumption	for	different	working	steps	was	

obtained	from	our	own	studies	(Holzleitner	et	al.	2011,	
2013).	The	shortest	drive	times	between	the	network	
nodes	were	calculated	in	a	GIS	and	stored	in	a	geoda-
tabase.	Unluckily,	for	CO2	emissions	we	do	not	have	
such	detailed	analysis	of	different	work	phases,	and	
we	needed	to	fall	back	on	distance-based	emission	cal-
culations,	using	average	values	of	fuel	consumption	
per	km.
The	transport	cost	by	rail	for	timber	freight	cars	

was	derived	by	joining	the	tariff	list	scaled	by	distance	
and	the	shortest	railroad	distance	from	GIS	analysis.	
Emissions	for	rail	transport	per	distance	and	weight	
were	taken	from	the	database	of	the	Global	Emission	
Model	 for	 Integrated	Systems	(GEMIS)	and	appor-
tioned	to	the	transported	energy	wood.

2.3 Test case
For	testing	purposes,	we	used	the	same	project	area	

as	was	chosen	in	Kanzian	et	al.	(2013).	This	project	area	
has	a	total	size	of	47,200	km²	and	is	split	into	38	forest	
administrative	districts	 (FADs).	Gronalt	and	Rauch	
(2008)	estimated	the	total	available	volume	of	energy	
wood	for	these	districts	to	be	882,170	oven	dry	tons	(t).	
A	square	grid	of	1.5	by	1.5	kilometers,	laid	over	the	
forest	area	and	resulting	 in	9,984	possible	resource	
points,	represents	the	resources.	Depending	on	the	for-
est	area	and	the	resources	of	each	FAD,	between	31	
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and	518	points	with	a	single	resource	volume	between	
32.7	and	139.9	t × a–1	were	generated.
The	number	of	heating	plants	across	the	study	area	

increased	over	the	last	two	decades,	so	we	selected	a	
total	of	228	heating	and	combined	heating	plants	with	
a	heating	capacity	of	more	than	one	MW	per	plant	by	
merging	 the	data	provided	by	different	provinces.	
Smaller	plants	with	a	heating	capacity	lower	than	one	
MW	were	excluded,	as	their	catchment	area	was	as-
sumed	to	be	too	small	for	our	chosen	scale.
The	total	energy	wood	consumption	of	the	selected	

plants	is	982,000	t × a–1,	which	exceeds	the	forest	re-
source	 potential	 of	 the	 supply	 region.	 The	 energy	
wood	demand	is	not	uniformly	distributed	because	
larger	heating	plants	with	a	demand	of	more	 than	
20,000	t × a–1	are	mainly	located	in	the	east	and	north,	
close	to	the	borders	of	the	study	area	(Fig.	2).
A	survey	of	72	plants	performed	in	2010	discovered	

an	average	MC	of	36.8%	for	the	energy	wood	delivered.	
A	clear	and	significant	trend	was	detected	showing	that	
larger	plants	take	fuel	wood	with	a	higher	MC	(Matz-

inger	2010).	Using	the	prediction	of	Matzinger	(2010),	
the	average	MC	for	the	test	case	was	set	to	37.5%.	As	the	
MC	influences	the	heating	value,	the	demand	in	dry	t	
was	also	assumed	to	change.	Based	on	the	actual	MC,	
the	demand	was	adjusted	by	its	heating	value,	using	the	
average	MC	as	the	reference	value.
A	GIS	procedure	helped	to	find	possible	storage	and	

terminal	sides,	respectively	(Kühmaier	et	al.	2014).	Due	
to	the	risk	of	bark	beetle	infestation	in	coniferous	stands	
in	Austria,	 storing	 of	 softwood	 for	 longer	 periods	
should	be	avoided	in	spring	and	summer.	For	different	
criteria,	such	as	distance	to	settlements	or	coniferous	
forests,	the	public	road	network	and	a	minimum	slope,	
grid	 layers	were	 calculated	 in	GIS	 (Kühmaier	 et	 al.	
2014).	Areas	suitable	for	terminals	were	generated	by	
weighting	and	combining	these	layers.	Within	these	
areas,	terminal	points	with	a	ten	km	radius	each	were	
located,	totaling	356	terminals	(Fig.	2).	Equipped	with	
a	60	cm	thick	gravel	layer	and	an	expected	lifetime	of	
ten	years,	fixed	cost	for	these	terminals	amounted	to	
1,100	EUR × a–1.	Variable	costs	per	t	depended	on	the	

Fig. 2 Study area with 38 forest administrative districts, forest land cover, locations of heating plants categorized into three sizes, terminal 
locations for storage and shipping stations for railway transport (Kanzian et al. 2013)
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type	of	energy	wood	(solid	or	chipped)	and	ranged	be-
tween	10.4	and	9.5	EUR× t–1.	Emissions	for	the	terminal	
construction	were	estimated	to	be	90	kg	CO2 × a–1	and	

0.45	kg	CO2 × t–1	per	t	transferred	via	terminals	(Kanzian	
et	al.	2013).

2.4 Model implementation
A	commercial	solver	platform	(XpressMP,	Fair	Isaac	

Cooperation)	was	chosen	for	the	implementation	of	the	
optimization	model.	Input	and	output	data	were	stored	
and	managed	within	personal	databases	partly	using	
SQL	queries.	Origin	destination	matrices	were	calcu-
lated	in	a	GIS	using	network	analysis	extensions.	Out-
put	data	were	analyzed	with	the	statistical	software	R 
(R	Development	Core	Team	2014)	and	the	packages	
RODBC	(Ripley	and	Lapsley	2015),	reshape2	(Wickham	
and	Hadley	2007)	and	plotrix	(Lemon	2006).

3. Results and discussion

3.1 Pareto analysis and moisture content  
sensibility
Supposing	that	the	Pareto	optimal	solutions	follow	

the	convexity	assumption	(Ehrgott	2000),	a	finite	num-
ber	of	combinations	was	selected	to	generate	Pareto	
curves	for	decision	makers.	Weighting	values	for	prof-
it	(λp)	and	emissions	(λe)	were	set	in	a	range	from	0	to	
1	with	an	increment	of	0.5	and	0.1,	respectively.	By	
plotting	 the	 results	 for	 each	model	 run,	 the	Pareto	
curve	provides	a	starting	point	for	interpretation.	As	

Table 1 Indices, decision and data variables used within the multi-
objective optimization model

+ Description

Sets

P Set of forest resource points (roadside stocks)

L Set of terminals

S Set of shipping stations

H Set of plants

K Transport mode – (0) solid or (1) chipped

Parameters

si Volume of energy wood at i; 

rjk Revenue at j for fuel type k, j  ∈ ∈H; k K

cijk

Transport costs from i to j for fuel type k,

i  ∈ ∪ ∪ ∈ ∪ ∈P  L I; j  H  L; k K

Variables

xijk

Volume to be transported from i to j at mode k,

i  ∈ ∪ ∪ ∈ ∪ ∪ ∈P T S; j  T S H; k K

Fig. 3 The result of 20 model runs with changing weights from 0 to 1 in steps of 0.05, showing the trade-offs between profit and GHG emis-
sion, was a typical Pareto curve (left). The share of energy wood supplied to the plants split into solid or chipped and its origin depending on 
the weighting between profit and emissions (right). A profit weight of 0 results in a minimum of emissions, whereas a weight of 1 results in 
a maximum of profit (Kanzian et al. 2013)
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shown	by	Kanzian	et	al.	(2013),	to	minimize	the	GHG 
emissions,	30%	of	the	woody	biomass	should	be	de-
livered	chipped	from	the	terminals	and	more	than	50%	
should	be	chipped	directly	from	forest	(Fig.	3,	right),	
which	causes	emissions	of	24.3	kg	CO2 × t–1	and	results	
in	gaining	a	profit	of	3.0	EUR × t–1	(Fig.	3,	left).	The	rest	
has	to	be	delivered	as	solid	energy	wood	directly	from	

forest	to	plant.	To	maximize	the	profit	by	changing	the	
weight,	GHG	emissions	will	only	rise	by	4.5%,	whereas	
the	profit	more	than	doubles	from	3.0	to	7.4	EUR× t–1.	
Thereafter,	close	to	90%	have	to	be	supplied	chipped	
at	the	terminal	because	transport	of	chips	is	cheaper	
than	transport	of	solid	energy	wood	by	log	trucks.	Fur-
thermore,	chipping	costs	at	 the	terminal	or	storage	
place	were	estimated	to	be	lower	than	costs	of	chip-
ping	at	the	forest	roadside.	Collecting	energy	wood	at	
terminals	will	 increase	 the	 transport	 distance	 and	
therefore	increase	GHG	emissions	under	the	given	as-
sumptions	(Fig.	3,	right).	Actually,	the	legal	gross	ve-
hicle	weight	limit	is	42	t	for	log	trucks	and	40	t	for	chip	
trucks.	If	the	values	for	both	trucks	were	harmonized	
and	set	to	42	t,	transport	of	chipped	material	would	be	
cheaper,	 and	 the	 share	would	 increase	 even	more	
(Kanzian	et	al.	2013).
Using	weights	from	0	to	1	in	steps	of	0.1	for	profit	

and	emissions	and	three	different	MC	levels	of	30,	37.5	
and	45%,	the	resulting	Pareto	curves	are	shifted	as	ex-
pected.	Higher	MC	 induces	 less	 profit	 and	 higher	
overall	emissions	(Fig.	4).	In	general,	the	profit	is	very	
sensible to changes in MC.	At	equal	weights	for	profit	
and	emissions,	the	profit	will	be	close	to	0	EUR × t–1 at 
emissions	of	26.15	kg	CO2 × t–1 at the highest MC	of	
45%.	 If	 the	MC	drops	 from	45%	 to	37.5%,	 the	 in-
crease	 in	 profit	will	 be	 6.80	 EUR × t–1	 and	 hence	
higher	than	during	a	further	MC	drop	from	37.5%	
to	30%	(4.80	EUR × t–1).

Fig. 4 Pareto curves for different levels of moisture content

Fig. 5 Sensitivity analysis of profit (left) and CO2 emissions (right) on changing moisture content for two different revenue scenarios. In the 
first scenario – business as usual – the revenue is based on moisture content, whereas in the second scenario, the revenue is constant/fixed 
for an average moisture content of 37.5%
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Of	course,	the	profit	is	affected	twice	by	the	MC 
change,	on	one	hand	by	the	costs	and	on	the	other	by	
the	revenues.	To	rule	out	the	effect	of	changing	reve-
nues	and	to	show	how	transport	costs	are	affected,	
another	simulation	with	fixed	revenues	was	conduct-
ed.	In	this	case,	the	sensitivity	of	the	model	was	lower	
but	still	clearly	visible,	with	a	profit	increase	from	
6.00	EUR × t–1	to	10.00	EUR × t–1	by	reducing	MC	from	
40%	to	30%	(Fig.	5,	left).	With	variable	revenues,	a	de-
crease	of	 10%	MC	 from	40	 to	 30%	will	double	 the	
profit	from	5.10	to	12.00	EUR× t–1.	As	expected,	the	emis-
sion	will	decrease	with	a	decreasing	MC,	and	there	seems	
to	be	no	dependence	on	the	revenue.	However,	the	ef-
fect	of	the	decreasing	MC	is	less	prominent	compared	
to	the	profit.	Reducing	MC	from	40	to	30%	will	save	
approximately	4%	of	CO2	emissions	per	t	(Fig.	5,	right).
Based	on	an	average	MC	of	37.5%,	the	demand	was	

adjusted	before	the	optimization.	For	the	test	data,	the	
supply	decreased	slightly	if	the	MC	was	set	to	a	lower	
value,	 but	 the	 change	 was	 small.	 Approximately	
728,150	t	would	be	supplied	at	37.5%	MC,	while	2.2%	
less	(711,020	t)	will	be	supplied	at	30%	MC	(Fig.	6).	Of	
course,	this	slight	change	is	caused	by	the	soft	con-
straints,	which	were	added	because	of	insufficient	en-
ergy	wood	resources.
Considering	the	transport	modes	and	how	the	ma-

terial	should	be	supplied,	MC	has	an	influence	on	the	
results.	At	 the	 base	MC	 level	 close	 to	 17%,	wood	
should	be	supplied	chipped	directly	from	the	forest	to	
the	plants.	The	major	share	of	75%	has	to	be	delivered	

chipped	via	terminal.	The	amount	of	direct	transport	
of	chips	decreases	to	10%	if	the	MC	was	set	to	30%,	
whereby	the	delivery	as	chips	via	terminal	increases	
to	82%	(Fig.	7).
The	average	volume	weighted	road	transport	dis-

tances	seem	not	to	be	very	sensitive	to	different	MCs 

Fig. 6 Sensitivity of supplied energy wood and number of truckloads 
needed to forward the energy wood at different MCs

Fig. 7 Share of supply sensitivity against changes in MC for equal 
profit and emission weighting value of 0.5

Fig. 8 Average transport distances for solid and chipped material 
and its dependence on MC for equal profit and emission weighting 
values of 0.5
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because	the	distance	is	more	or	less	the	same	if	an	MC 
of	37.5%	and	30%	is	tested	at	distances	of	47.0	to	46.6	
km.	Of	course,	there	is	a	relation	between	the	share	of	
supply	and	transport	distances	for	different	modes.	
The	more	material	to	be	delivered	chipped	directly,	
which	is	the	case	at	higher	MC,	the	longer	the	trans-
port	distances	of	this	mode	(Fig.	8).
Increasing	demand	at	higher	MC	results	in	a	high-

er	number	of	truckloads	and	a	larger	relative	increase	
of	truckloads	than	in	actual	supply	(Fig.	6).	There	are	
7%	fewer	truckloads	needed	to	haul	the	energy	wood	
at	30%	MC	compared	to	37.5%,	when	the	supply	will	
be	only	2.2%	lower.	For	fresh	material	of	45	to	50%	MC,	
the	supply	from	the	forests	increases	by	3.3%	but	re-
quires	10%	more	truckloads.
Considering	specific	road	transport	distance	and	

emissions	per	t,	the	effect	of	the	MC	becomes	even	
more	visible.	The	specific	distance	will	decrease	from	
2.9	to	2.5	km × t–1,	if	the	MC	is	set	to	30%	instead	of	
37.5%.	In	addition,	the	specific	emissions	decrease	
from	0.33	to	0.27	kg	CO2 × t–1.

4. Conclusions
In	 this	 study,	 the	 multi-objective	 optimization	

model	developed	by	 the	authors	 and	presented	 in	
Kanzian	et	al.	(2013)	has	been	extended	to	study	the	
impact	of	MC	on	profit	and	GHG	for	a	supply	network	
of	energy	wood.
Clearly,	the	MC	has	an	influence	on	the	efficiency	

of	the	whole	supply	chain	network	for	several	evalu-
ation	 criteria.	 The	weighted	 sum	 scalarization	 ap-
proach	gives	the	possibility	of	including	several	objec-
tives	 and	 to	 figure	 out	 the	 effects	 on	 profit	 and	
emissions	quite	quickly.	Due	to	the	nature	of	the	study	
data,	profit	 is	more	sensitive	 to	changing	MC than 
GHG.	This	result	is	less	pronounced	but	still	traceable	
via	lower	transport	costs.	MC-related	revenues	are	ex-
cluded	from	the	analysis.
Lower	MC	means	reducing	truckloads,	which	is	

beneficial	both	in	terms	of	economy	and	environment.	
Interestingly,	 the	specific	emissions	take	more	than	
proportional	advantage	of	a	lower	MC.	The	effect	of	
MC	was	expected	to	be	more	present,	especially	on	the	
demand	side	and	the	transport	distance,	probably	a	
result	of	the	applied	demand	constraints	that	do	not	
balance	the	demand.
Interestingly,	fresh	material	with	a	high	MC is more 

likely	to	be	transported	directly	from	forest	to	plant.
Currently	the	model	considers	only	a	period	of	one	

year	and	no	change	in	MC.	A	further	development	into	
a	multi-period	optimization	model	opens	up	the	pos-

sibility	of	considering	a	change	in	MC,	e.g.,	by	includ-
ing	 the	 storage	effect,	 estimated	by	natural	drying	
models	that	have	been	developed	and	published	re-
cently.
Transport	costs	are	the	driving	force	in	fuel	wood	

supply	and	need	to	be	estimated	as	accurately	as	pos-
sible.	In	addition	to	MC,	the	bulk	density	plays	an	im-
portant	role	in	determining	the	actual	payload.	The	
lower	the	bulk	density	of	the	raw	material,	especially	
the	case	 for	harvesting	residues,	 the	more	 likely	 is	
chipping	in	the	forest	to	increase	the	density.	Energy	
wood	properties	also	affect	chipper	performance	(Spi-
nelli	et	al.	2011),	which	were	assumed	to	be	constant	
in	the	present	study.
Although	the	results	give	a	better	understanding	

of	the	interactions	between	MC	and	energy	wood	sup-

Table 2 List of parameters for transport cost calculations for solid 
and chipped material

Definition, terms Unit
Solid 
k=0

Chipped 
k=1

Loading time for mode k, tk
L h 0.8 1.08

Driving time from i to j k, tijk
D h GIS

Unloading time k, tk
U h 0.53 0.62

Waiting time as percentage of 
driving time, pk

W
% 0 20

Hourly costs k, ck
h

EUR×h–1 78 65

Road charge from i to j, cij
tol

EUR×km–1

Load volume for mode k, lk
V m3 85 90

Gross legal weight limit t 42 40

Payload for mode k () t 22 22

CO2 conversion factor from l 
to kg

2.64

CO2 emissions transport kg CO2 km–1 2.05 1.32

CO2 emissions chipping kg CO2 t
–1 8.4

Conversion factor from loose 
m3 to dry t

kg m–3 5.26

Average wood density – 475

Conversion factor solid to 
loose m3

– 2.5

Integer number of trips 
needed to transport the total 
volume from i for mode k (nik)

– –
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ply	network	design,	there	are	abundant	possibilities	
for	 a	 further	development	 of	 the	 optimization	 ap-
proach	presented	and	a	model	to	enhance	the	practi-
cality	and	the	decision	quality.
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