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1. Introduction
Data envelopment analysis (DEA) has over the years 

evolved into a widely accepted research technique that 
the operations research community is increasingly ap-
plying to analyse and improve relative performance of 
private and public production entities (Liu et al. 2013). 
DEA is a non-parametric mathematical programming-
based approach for performance estimation of produc-
tion or decision making units (DMUs) addressed in 
Charnes et al. (1978) (Charnes, Cooper and Rhodes 
model – »CCR«) and extended by Banker et al. (1984) 
(Banker, Charnes and Copper model – »BCC«). It pro-
vides a framework for the estimation of best-practice 
frontier for production entities involving multiple in-

puts and outputs to allow for benchmarking and per-
formance evaluation (Estelle et al. 2010). The overall 
efficiency of a production unit can be estimated using 
the CCR model under the assumption of constant re-
turns to scale, while the technical or managerial effi-
ciency of a unit can be estimated using the BCC model 
under the assumption of variable returns to scale. DEA 
classifies production units into efficient and inefficient 
units based on their selected inputs and outputs by 
maximizing the ratio between the weighted output and 
the weighted input (Sharma and Yu 2015). An efficient 
unit is assigned the maximum efficiency score of 1, 
while a unit with a score less than one is considered less 
efficient relative to its efficient peers. DEA is able to 
estimate the performance of production units in terms 
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of their ability to either minimize input usage under the 
production of given output (input orientation) or to 
maximize output production with given inputs (output 
orientation) (Li et al. 2017). It is important to note that 
DEA does not suggest that a unit with a score of 1 is 
absolutely efficient (operating at optimum output-input 
ratio), however, by comparing several units’ output-
input ratios (i.e. benchmarking), it can estimate that one 
or more units are more or less efficient than others 
(Sherman and Zhu 2006).

Researchers in the field of logging operations have 
only recently began to apply DEA in estimating per-
formance of forest harvesting operations and it is gain-
ing attention (Obi and Visser 2017a, Hailu and Veeman 
2003, LeBel and Stuart 1998). The application of DEA 
in forest harvesting offers opportunities in examining 
harvesting efficiency owing to its flexibility, without 
requiring assumptions about the functional relation-
ships among inputs and outputs, and its invariant 
nature to units of production factors (Macpherson et 
al. 2013). The effective application of DEA is based on 
the assumption that the production units whose per-
formance is being estimated operate within a homog-
enous production environment (Carrillo and Jorge 
2016). However, this assumption in practice does not 
hold for most harvesting operations as the ability of a 
harvesting crew/contractor to transform inputs into 
outputs is not only affected by discretionary inputs 
(i.e. controllable by the management) or managerial 
skills. It is also influenced by exogenous factors such 
as terrain slope, roughness or tree size (otherwise re-
ferred to as the operating environment) that are be-
yond direct managerial control (Obi and Visser 2017b, 
Aalmo and Baardsen 2015). These factors provide ei-
ther a favourable or an unfavourable operating envi-
ronment to the crews. An unfavourable operating 
environment would demand additional inputs from 
the production unit to produce the same level of out-
put as a unit in a favourable environment in order to 
overcome the external disadvantage making the unit’s 
efficiency to be underestimated (Hu et al. 2011). This 
has been identified as a major problem in DEA studies 
as most performance studies do not account for differ-
ences in the operating environment of production 
units (Carvalho and Marques 2011, Fried et al. 2008).

In forest harvesting where operations are carried out 
in complex and unstructured operating environments 
(Di Fulvio et al. 2017), factors exogenous to harvesting 
crews’ control are likely to either positively or nega-
tively influence the performance of harvesting opera-
tions. For example, steep terrain or terrain hindrance is 
expected to be more difficult for ground-based harvest-
ing systems in terms of machine trafficability as op-
posed to flat or rolling terrain. As such, a relatively 

 efficient crew in a harvest operation with high degree of 
terrain hindrance may be labelled as inefficient when 
benchmarked against another in an operation with low 
level of terrain hindrance. Without adequately control-
ling for exogenous factors, efficiency estimates in DEA 
will most often be biased as inefficiencies are assumed 
to be attributable to managerial skills (Macpherson et 
al. 2013). The managerial efficiency of units in adverse 
or unfavourable operating environments could be un-
derestimated, conversely those in favourable environ-
ments could be overestimated (Yang and Pollitt 2009); 
thus potentially leading to inefficient allocation of re-
sources. Accounting for differences in the operating 
environment of independent forest harvesting contrac-
tors is critical for objective and unbiased assessment of 
performance among harvesting crews.

There is an established four-stage DEA procedure 
developed by Fried et al. (1999) which is able to ac-
count for the factors that are not in direct control of the 
harvesting crews. However, existing studies on the 
application of DEA in the forest harvesting sector have 
so far focused on assessing performance without con-
sidering non-discretionary inputs, i.e. inputs beyond 
the managers’ control. Obi and Visser (2017a) exam-
ined the operational efficiency of 423 independent for-
est harvesting contractors in New Zealand over a pe-
riod of 7 years using DEA. The authors considered five 
inputs, namely, number of harvest days, number of 
machines, total harvest area, number of log sorts and 
total volume of timber, and one output – system pro-
ductivity in the production model. They reported that 
majority of the harvesting contractors operate at or 
near scale efficiency level, but the source of inefficien-
cy in the industry is both technical and managerial. 
They added that investment in technology and human 
capital could improve the overall efficiency of the in-
dustry. LeBel and Stuart (1998) applied DEA models 
to measure the technical efficiency of 23 fully mecha-
nized loggers in Canada during the period 1988–1994. 
The aggregate, technical, and scale efficiencies of the 
loggers were evaluated based on DEA models with 
capital, consumables, and labour as the inputs and 
tons of wood as output. They reported majority of the 
contractors to be efficient. Factors identified as influ-
encing the technical efficiency of the loggers include 
low capacity utilization and scale of harvesting opera-
tions. Hailu and Veeman (2003) using panel data cov-
ering a period of 19 years (1977–1995) analysed the 
technical efficiency, technical change and total factor 
productivity in the logging industries for six boreal 
provinces in Canada using DEA. The study reported 
substantial technical efficiency differentials among the 
provinces. The authors identified some region-specif-
ic variables that influenced efficiency of logging 
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 operations in the regions. The variables include forest 
density, proportion of hardwood production, scale of 
operation measured as production per establishment, 
and engineering construction per area harvested.

Literatures on performance evaluation that ac-
count for the effects of exogenous factors on the effi-
ciency of production entities in different industries 
exist (Zhu et al. 2016, Ferrera et al. 2014, Macpherson 
et al. 2013). There is however no literature controlling 
for the effects of the operating environment on effi-
ciency estimates of forest harvesting operations. The 
objective of this study therefore, is to measure the 
managerial efficiency of independent forest harvesting 
contractors in New Zealand taking into account the 
effect of differences in their operating environment. 
This removes the environment bias, and the resulting 
performance estimates are attributable purely to man-
agerial efficiency. This is accomplished by applying 
the four-stage DEA procedure. This study extends the 
previous work of Obi and Visser (2017a) by introduc-
ing the operating environment factors in the perfor-
mance evaluation procedure.

2. Methodology

2.1 The four-stage DEA procedure
Fried et al. (1999) developed an empirical tech-

nique termed the four-stage DEA procedure to sepa-
rate managerial inefficiency from other inefficiency 
components beyond managerial control. The four-
stage DEA procedure rests on the premise that pro-
duction units operating in relatively unfavourable 
environments may be wrongly labelled as inefficient 
(Hu et al. 2011, Yang and Pollitt 2009). This procedure 
is able to control for the exogenous operating environ-
ment factors by compensating for their effects, and has 
been applied in previous literatures (Zhu et al. 2016, 
Ferrera et al. 2014, Yang and Pollitt 2009). Data on the 
original production factors are modified according to 
the effects of the exogenous factors, and the modified 
data are used for the final performance evaluation 
thus, providing a pure measure of managerial effi-
ciency. The procedure is briefly described here so that 
the reader can follow the process through to the re-
sults. For detailed description of the four-stage DEA 
procedure, readers are referred to Fried et al. (1999).

2.1.1 Stage one DEA
In the first stage, following a standard production 

theory set under variable returns to scale, a DEA pro-
duction frontier is estimated using selected inputs and 
outputs for the production units which in the case of 
this study are independent forest harvesting contrac-
tors. The DEA estimator is used to estimate the Farrell 

technical efficiency (Farrell 1957) defined as a measure 
of efficiency under the restriction that a linear combi-
nation of efficient units produces the same or more of 
all outputs and that the reduction in inputs is equipro-
portional. The efficiency scores are estimated without 
regard to the exogenous factors. This establishes a 
best-practice frontier for the harvesting crews based 
on the inputs and outputs included in the DEA. How-
ever, the efficiency estimates of crews operating in 
»good« operating environment are overestimated and 
that of the harvesting crews in »harsh« or »difficult« 
operating environments are underestimated. An in-
put-oriented DEA framework with variable returns to 
scale (Banker et al. 1984) is adopted in the first DEA 
stage and can be represented by the following expres-
sion (Cordero-Ferrera et al. 2011):
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Where:
xij vector of inputs for unit j
yrj vector of outputs for unit j
q0 efficiency score
e infinitesimal non-Archimedean constant
lj weightings
sr

– inputs slacks
sr

+ outputs slacks.

2.1.2 Stage two
The second stage is to estimate N input equations 

using an appropriate econometric method such as To-
bit regression. The dependent variables are total input 
slacks (radial plus non-radial slack) estimated from the 
first stage DEA, while the independent variables are 
measures of the external operating environment. This 
quantifies the effect of the exogenous factors as it af-
fects the excessive use of inputs so they can be adjusted 
accordingly. The radial input slack represents the re-
duction in the inputs of a relatively inefficient DMU 
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were it to operate efficiently beyond which no further 
reduction in inputs is possible without reducing out-
put; whereas the non-radial slack represents the poten-
tial additional reduction in the inputs of a relatively 
inefficient DMU after proportionally reducing its cur-
rent inputs to become efficient (Fried et al. 1999). The 
slack arise from two distinguishable effects: the techni-
cal inefficiency of the units and the influence of the 
exogenous factors which this approach aims to decom-
pose and make adjustments on the original input val-
ues (Cordero et al. 2009). The sign of the coefficients 
estimated in the regressions provide information about 
the direction of the effects of the exogenous factors on 
each total input slack which may vary from one slack 
to another including in significance. Tobit regression is 
applied in this study, and has been applied in previous 
studies (Hung and Shiu 2014, Macpherson et al. 2013, 
Hu et al. 2011, Avkiran 2009, Fried et al. 1999). The N 
input equations are specified as follows:

    ( )β= = … = …k k k
j j j j j ,  ,  , 1, .., ; 1, ..,ITS f Q u j N k K  (2)

Where:
ITSj

k  unit k’s total slack for input j based on the DEA 
efficiency estimates from the first stage

Qj
k  vector of variables characterizing the external 

environment for unit k that may affect the utili-
zation of input j

bj vector of coefficients
uj

k disturbance term.

2.1.3 Stage three
The third stage uses the estimated parameters from 

the second stage regression (Tobit regression) to pre-
dict new total input slack for each input and for each 
production unit based on the operating environment 
factors applicable to that unit:

 ( )β= = … = …k k
j j j j , , 1, .., ; 1, ..,ˆITS f Q j N k K  (3)

The predicted total input slacks are used to adjust 
the primary input data for each unit according to the 
difference between maximum predicted slack and the 
predicted slack for each input:

{ } = + − = … = …  
k adj k k k k
j j j j  , 1, .., ; 1, ..,ˆ ˆx x Max ITS ITS j N k K

 { } = + − = … = …  
k adj k k k k
j j j j  , 1, .., ; 1, ..,ˆ ˆx x Max ITS ITS j N k K   (4)

Where:
xj

k adj value of unit k’s adjusted jth input
xj

k value of unit k’s primary jth input
Maxk{ITSj

k}  maximum predicted slack for unit k

Eq. 4 creates a new dataset for each production unit 
wherein the inputs are adjusted for the influence of the 
operating environment. The maximum predicted 
slack is used to establish a base equal to the least fa-
vourable set of external conditions; thus a unit with 
external factors generating lower level of predicted 
slack would have its input adjusted upwards to put it 
on the same level with the unit operating in the least 
favourable environment. By increasing the unit’s in-
put and leaving the output unchanged, its perfor-
mance is purged of any advantage offered by its fa-
vourable operating environment.

2.1.4 Stage four DEA
The fourth and final stage re-runs the DEA (Eq. 1) 

under the initial input–output production specifica-
tion and generates new measure of efficiency by using 
the adjusted input dataset free from the influence of 
the operating environment. The new efficiency scores 
provide a measure of the efficiency that is attributable 
purely to managerial skills.

2.2 Dataset
This study uses a dataset on individual contracted 

harvesting operations (involving mechanized felling, 
extraction, processing of stems and loading out onto 
trucks) obtained from a large commercial forest com-
pany in New Zealand. The dataset contains detailed 
information on harvesting crews, stand, terrain, cost, 
harvesting system and productivity factors on harvest-
ing operations from January 2016 to March 2017. The 
data was collected at individual-contract level in order 
to capture the operating environment specific to each 
harvesting operation. Thus, it is able to capture the 
true reflection of the effect of the exogenous factors on 
input requirement for the operations. The data were 
collated from the different regions of New Zealand 
amounting to a total of 67 entries on harvesting op-
erations executed by independent forest harvesting 
crews. Due to the confidentiality agreement binding 
on the data, information on the identity of the harvest-
ing contractors are not provided; each harvesting con-
tractor is assigned a unique identifier for ease of refer-
ence. All the harvest operations were clear-fell in New 
Zealand Radiata pine plantations.

2.3 Production and exogenous factors
Previous studies on performance evaluation in the 

forest harvesting sector have employed a variety of 
input–output factors. Based on available data and rel-
evant literatures (Li et al. 2017, Obi and Visser 2017a, 
Visser and Spinelli 2012,Visser et al. 2011, Amishev et 
al. 2009), this study selects seven inputs, one output 
and three exogenous factors for the performance 
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 evaluation of the harvesting crews. The factors are con-
sidered to practically reflect the harvesting process, 
considering the available data.

Input factors: These are factors over which the har-
vesting contractors have some level of control and they 
include (i) Number of workers (NMWOK) – this the 
average number of workers in a crew engaged in the 
harvesting operation of a defined forest area over the 
entire harvesting period; (ii) Number of machines 
(NMMCH) – defines the total number of machines 
deployed for a harvesting operation; (iii) Harvest days 
(HDAYS) – this is the total number of days of harvest-
ing by a crew in a defined forest area; (iv) Net stocked 
area (NETAREA) – being the total actual harvest area 
size measured in hectares; (v) Total recoverable vol-
ume (TREVOL) – is the actual volume of stem har-
vested from a defined forest area measured in tonnes 
per hectare; (vi) Landings size (LNDSIZE) – this is the 
total landing size for a harvesting operation estimated 
from the product of average landing size and number 
of landings, and is measured in hectares; and (vii) Av-
erage haul distance (AVHUD) – this is the mean ex-
traction haul distance measured in meters, and is ob-
tained from the operational harvest plan.

Output factor: System productivity (SYSPROD) 
measured in tonnes per scheduled machine hour 

(tons/SMH) is considered the output of the harvest 
operations and is calculated as the total volume of har-
vested timber from a defined forest area divided by 
the total harvest time.

Exogenous factors: These are exogenously fixed fac-
tors within the operating environment of the harvest 
crews over which they do not have direct control. Three 
factors are identified as exogenous factors for the pur-
pose of this study and they include (i) terrain slope 
(AVSLOP) – this the average slope of the harvested for-
est area measured in degrees, (ii) log sorts (LGSORT) 
– this is the number of log sorts from a defined forest 
area contracted to a harvesting contractor; and (iii) piece 
size (PESIZE) – is defined as the average piece size from 
a harvest area measured in ton/stem. Table 1 presents 
the descriptive statistics of all the factors.

2.4 Analysis
Efficiency scores for the harvesting crews described 

in terms of the technical efficiency are estimated using 
DEAP software version 2.1 which also estimates ra-
dial and non-radial slacks for each production factor 
using a multi-stage process (Coelli 1996). Technical 
efficiency refers to the ability of a unit to utilize its 
limited inputs to produce the desired outputs and it is 
influenced by the use of technology (Coelli et al. 2005). 
The number of production units in a DEA should at 
least be twice the number of inputs and outputs com-
bined (Golany and Roll 1989) as a large number of 
inputs and outputs combined compared to the num-
ber of units diminishes the discriminatory power of 
DEA (Cook et al. 2014). This study has 67 production 
units (harvesting crews) and 8 inputs/output.

3. Results and discussion

3.1 First stage DEA without exogenous factors
The first stage DEA results presented in Table 2 

shows a large variation in efficiency estimates of the 
harvesting contractors. The mean efficiency score for 
the contractors is 0.79, theoretically suggests that the 
crews are currently operating at about 79% efficiency 
of their current input levels. Conversely, on average a 
harvest crew could reduce its current input usage by 
approximately 21%, were it to perform on the efficient 
frontier. A total of 18 crews (27%) are estimated as ef-
ficient, i.e. efficiency score = 1, while 14 crews (20%) 
have efficiency scores of 0.8 to 0.99. Most, 43% (N=29) 
are estimated to have efficiency scores of 0.60 to 0.79 
(i.e. 60 to 79%). However, operations of independent 
harvesting contractors are often influenced by operat-
ing environment factors outside the control of the 

Table 1 Descriptive statistics of the factors for performance evalu-
ation (N=67)

Factors Mean SD Min. Max.

Inputs

NMWOK 6.2 2.5 2 18

NMMCH 5.2 1.9 2 13

HDAYS 65.7 41 12 206

NETAREA, ha 32.2 27.3 5.6 153.8

TREVOL, tons/ha 555 125 298 902

LNDSIZE, ha 0.84 0.52 0.06 2.4

AVHUD, m 256.6 227.3 0 1937

Output

SYSPROD, tons/SMH 31.7 11.2 9.6 59.5

Exogenous

AVSLOP 18.6 7.7 11 39.3

LGSORT 11.6 2.1 7 17

PESIZE, ton/stem 1.4 0.5 0.5 3.1

SD – Standard deviation
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crews (Obi and Visser 2017b, Hoffmann et al. 2016, 
Aalmo and Baardsen 2015). Crews operating in diffi-
cult environments may find it challenging to equal the 
performance of their counterparts in more favourable 
operating environment.

Table 2 Stage one efficiency scores statistics (N=67)

Statistics Efficiency rankings N % of crews

Mean 0.794 100% 18 27

SD 0.158 80–99% 14 21

Median 0.784 60–79% 29 43

Min. 0.519 40–59% 6 9

Max. 1 – – –

SD – Standard deviation

3.2 Second stage analysis
In the second stage, total input slacks representing 

potential input saving for each of the inputs is re-
gressed against the set of exogenous factors (indepen-
dent variables) namely, average slope, log sorts and 
piece size using Tobit regression. There are seven re-
gression models, one for each input slack. The param-
eters estimated are presented in Table 3. A positive 
exogenous factor coefficient on a total input slack sug-
gests that the factor constitutes an unfavourable envi-
ronment resulting in excess use of the input by the 
harvest crews; the reverse being the case for a negative 

coefficient. In other words, an operating environment 
with a positive (negative) coefficient on a total input 
slack is associated with the inefficient (efficient) use of 
the input, and the sign and statistical significance can 
differ across the inputs (Fried et al. 1999). Consequent-
ly, an operating environment with a positive coeffi-
cient on an input slack tends to reduce harvesting ef-
ficiency as its measure increases, and vice versa for an 
operating environment with a negative coefficient.

As shown in Table 3, average slope (AVSLOP) has 
a positive coefficient on all the input slacks but its ef-
fect is significant only on the number of workers 
(NMWOK), number of machines (NMMCH) and av-
erage haul distance (AVHUD) slacks. Its positive coef-
ficient on all slacks can be attributed to the enormous 
challenge it presents to forest harvesting operations 
irrespective of the system of harvesting adopted. 
Number of log sorts (LGSORT) has a negative coeffi-
cient on all the total input slacks except on AVHUD 
slack, and it is significant on NMWOK and total recov-
erable volume (TREVOL) slacks. This suggests an in-
crease in log sorts is favourable to the efficient use of 
all the inputs in the production model except AVHUD. 
Log sorts, thus can be said to improve harvesting ef-
ficiency as it increases. This makes practical sense in 
that harvest operations in New Zealand with high log 
sorts are usually associated with large forest areas, and 
is often characterized by high system productivity. 
Piece size on the other hand has an insignificant posi-
tive coefficient on NMWOK slack and a significant 
positive coefficient on TREVOL slack. The coefficient 
is negative and insignificant on all other input slacks. 
The significant positive coefficient of piece size on 

Table 3 Estimation results of total input slacks using Tobit regression. Standard errors are shown in brackets

Regressor

Dependent variables, slacks

NMWOK NMMCH HDAYS NETAREA, ha
TREVOL, tons/

ha
LNDSIZE, ha AVHUD, m

Constant
5.36

(2.35)

3.21

(1.73)

78.8

(43.9)

28.5

(24.2)

201

(112)

0.58

(0.47)

–207

(219)

AVSLOP, o 
0.12**

(0.04)

0.07*

(0.03)

0.99

(0.86)

0.31

(0.47)

1.44

(2.19)

0.012

(0.01)

9.90*

(4.23)

LGSORT
–0.52**

(0.18)

–0.22

(0.13)

–2.85

(3.28)

–0.36

(1.80)

–18.3*

(8.43)

–0.03

(0.04)

15.0

(16.3)

PESIZE, ton/stem
0.23

(0.68)

–0.42

(0.50)

–21.3

(12.9)

–11.8

(7.07)

69.0*

(32.2)

–0.05

(0.14)

–70.1

(63.5)

Log-Likelihood –132 –117 –287 –256 –337 –55.3 –365

*significant at 95%, **Significant at 99%
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TREVOL is understandable in that for a given tree 
stand, increased piece size is expected to result in in-
creased total recoverable volume. The varying effects 
of the exogenous factors on the input slacks justifies 
the need to correct the initial DEA scores for the influ-
ence of the factors. Otherwise, the impact of the oper-
ating environment on harvesting operations may con-
sistently result in estimating crews in »good« operating 
environments as more efficient than those in »harsh« 
environments. In practical terms, the results present 
some insights as to the direction of the effects of these 
exogenous factors on the usage of harvesting inputs 
thus providing some guide as to the inputs that should 
be carefully managed under certain operating envi-
ronments in order to improve overall harvesting effi-
ciency.

3.3 Third stage analysis
The estimated regression parameters presented in 

Table 3 are used in the third stage analysis to predict 
a new set of total input slacks for each of the crews 
according to the factors characterizing their operating 
environment (Eq. 3), and also to adjust the initial input 
data for each crew according to Eq. 4. The maximum 
predicted slack is used to set a baseline for the least 
favourable operating environment (Fried et al. 1999). 
A crew with a predicted total input slack less than this 
value for an input will have its corresponding input 
factor adjusted upward. Table 4 presents a summary 
statistics of the adjusted inputs for the harvesting con-
tractors. It can be seen that the mean value for each of 
the adjusted inputs (Table 4) is higher than its corre-
sponding original mean value presented in Table 1. 
This is because the adjusted input data controls for the 
influence of the three exogenous factors considered in 
this study, thus giving no advantage or disadvantage 
to any crew owing to a favourable or unfavourable 
operating environment in terms of input usage.

3.4 Final stage DEA with exogenous factors
The fourth and final stage of the approach is to re-

run the DEA based on the initial input-output specifi-
cation using the adjusted input data. This produces 
new efficiency estimates for the contractors attribut-
able purely to managerial skills void of the influence 
of the operating environment factors considered in the 
analyses. Descriptive statistics of the results of the final 
stage DEA adjusted for the influence of the operating 
environment is presented in Table 5. Adjusting the in-
puts for the effect of exogenous factors on the perfor-
mance of the harvesting crews results in an increase in 
the number of crews estimated as efficient, and in the 
number crews in the 80–99% efficiency ranking. Before 

the adjustment (stage 1), 18 of the 67 contractors (27%) 
were efficient – 100% efficiency score (Table 2) and af-
ter the adjustment (stage 4) 23 crews (34%) were esti-
mated to be efficient (Table 5). The mean and mini-
mum efficiency estimates in stage four DEA also show 
that efficiency estimates are higher after adjusting for 
exogenous factors. The results indicate that it is impor-
tant to include the effect of exogenous factors in the 
performance evaluation of harvesting operations.

A smaller variation in performance among the 
crews is observed as evident in the lower standard 
deviation of the performance estimates in the stage 
four DEA results (Table 5) compared to the stage 1 
results (Table 2). The decrease in standard deviation 
reflects an overestimation of the performance of units 
in favourable conditions and an underestimation of 

Table 4 Summary statistics of the adjusted input factors of the 
harvesting contractors

Variables
Statistics

Mean SD Min. Max.

NMWOK 9.6 2.2 4.8 19.2

NMMCH 7 1.7 4.5 14

HDAYS 98.3 41.6 36.5 231.3

NETAREA, ha 44.2 26.8 14.9 162.4

TREVOL, ton/ha 704 109 500.5 1003

LNDSIZE, ha 1.1 0.5 0.2 2.8

AVHUD, m 438.7 216.8 198.9 1950

SD – Standard deviation

Table 5 Stage four estimated efficiency score statistics (N=67)

Statistics Efficiency rankings N % of crews

Mean 0.90 100% 23 34

SD 0.095 80–99% 32 48

Median 0.915 60–79% 12 18

Min. 0.68 – – –

Max. 1 – – –

Returns to 
Scale

Constant 19% – –

Increasing 78% – –

Decreasing 3% – –

SD – Standard deviation



O.F. Obi and R. Visser Including Exogenous Factors in the Evaluation of Harvesting Crew Technical Efficiency ... (153–162)

160 Croat. j. for. eng. 39(2018)2

those in more challenging environments in the first 
stage DEA. The average efficiency score increased by 
approximately 11% (79.4% to 90%) after controlling for 
environment effects on the efficiency score.

Approximately 19% of the crews operate under 
constant returns to scale while 78% operate under in-
creasing returns to scale. This suggests that majority 
of the harvesting crews possess the capacity to im-
prove their system productivity. It is important to note 
that a harvesting contractor estimated to be efficient 
(i.e. efficiency score = 100%) based on the four-stage 
DEA technique applied in this study does not interpret 
to mean that it has reach its maximum production ef-
ficiency or capacity. The DEA efficiency estimate of 1 
assigned to the contractor means that among its peers 
based on their current input utilization and produc-
tion outputs, the contractor outperformed its peers 
and can act as a benchmark for others in improving 
their managerial efficiency. The high percentage of the 
contractors operating under increasing returns to scale 
suggests the existence of opportunities to improve in-
put utilization efficiency and consequently improve 
overall harvesting efficiency.

To statistically establish a difference between stages 
1 and 4 DEA efficiency estimates, the Mann-Whitney 
U-test is applied. The Mann-Whitney U-statistics reject 
the null hypothesis of equality of the first and fourth 
stage efficiency scores (p-value = 0.0001). This implies 
that there exists a significant difference in the manage-
rial efficiency of the harvesting contractors adjusted 
and unadjusted for differences in the operating envi-
ronment. The slack adjusted new efficiency estimates 
represent potential minimum reduction in inputs if a 
crew operated in the worst environment and per-
formed up to the efficient frontier (Fried et al. 1999). 
The overall increase in the mean efficiency score in the 
fourth stage DEA suggests that crews in difficult 
 operating environment exhibit better management 
skills but were adjudged poorly in the first stage DEA. 
In summary, including the operating environment 
 factors in performance evaluation does make a signi fi-
cant difference in the final technical efficiency estimates 
in forest harvesting operations.

4. Limitations of the study 
and future research

Although this study achieved its objective of mea-
suring impartially the technical efficiency (managerial 
efficiency) of forest harvesting contractors including 
quantitative environment factors, it presents some 
limitations worth acknowledging. The production 
model for the forest harvesting operations incorpo-

rated only seven inputs, one output and three environ-
ment factors. These factors are not exhaustive and was 
limited largely by availability of data. It would be in-
teresting to incorporate additional factors, where data 
are available, in future studies including those endog-
enous to harvesting crews such as training, years in 
business, operator age, etc. The study did not consid-
er statistical noise which is another phenomenon ca-
pable of influencing performance (described as the 
impact of good luck and bad luck), omitted variables 
and other related phenomena (Fried et al. 2002). Sta-
tistical noise is reflected in a random error term in sto-
chastic frontier analysis-based performance evalua-
tion of production units. This is left as a future line of 
study in performance evaluation within the forest 
harvesting industry.

5. Conclusions
The four-stage DEA approach proposed by Fried 

et al. (1999) is applied in this study to account for the 
effect of non-discretionary factors, often exogenously 
fixed, on the performance of independent forest har-
vesting contractors. The very few DEA studies on per-
formance within the harvesting sector have focused 
simply on estimating performance in terms of effi-
ciency without taking into account the possible influ-
ence of the operating environment. The four-stage 
DEA approach simultaneously adjusts inputs factors 
to control for the operating environment factors and 
produces efficiency index attributable purely to man-
agerial skills removing the bias introduced by the op-
erating environment. Using data on forest harvesting 
operations contracted to 67 harvesting crews in New 
Zealand, this study demonstrates that benchmarking 
performance of harvesting crews without accounting 
for differences in the operating environment will lead 
to biased, inaccurate and misleading estimates. Sig-
nificant difference (p<0.01) was observed between the 
mean managerial efficiency estimates unadjusted and 
adjusted for the effect of the operating environment 
with a mean increase of about 11% indicating the im-
pact of the operating environment factors considered 
in this study. Previous studies also reported a differ-
ence between the mean efficiency score unadjusted 
and adjusted for the effect of the operating environ-
ment ranging from 10–23% (Macpherson et al. 2013, 
Kontodimopoulos et al. 2010, Wang et al. 2006, Fried 
et al. 1999). The study provides some useful decision 
support to forest companies, policymakers, and gen-
eral industry stakeholders involved in the measure-
ment and overall improvement of forest harvesting 
performance.
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