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1. Introduction
Sensors and data analytics form a combination of 

hardware and software that have become essential 
technologies of our modern world. Just an average 
phone contains today a variety of sensors and software 
applications helping companies better analyze human 
motion and behavior. In the same way, sensing tech-
nology and data analytics help various industries to 
get insights into information that is not obvious with 
the naked eyes.

Automation is one of the fields where the major 
success relies on sensing technology. Robotics, among 
many other fields of automation, has seen a substantial 
increase in the need for sensors and data analytics to 
seek for new tasks that can benefit from automation. 
Repetitive motion is an example of such tasks, which 
we see performed by people when they monotonous-
ly execute some given work, as for example, in facto-

ries, operating machines, driving vehicles, moving 
objects, etc. Analyzing motion in itself is a research 
area finding application in various fields. From health-
care, biomechanics, to robotics, understanding how 
motion is performed has evolved into a variety of me-
chatronic devices automating complex actions that 
were once only performed by humans (Siciliano and 
Khatib 2016).

Just like any other industry, forestry continues to 
be radically altered by technology. To date, harvester 
and forwarder have been two important machines for 
Scandinavian forestry (Nurminen et al. 2006, Eriksson 
and Lindroos 2014). The former cuts trees into round-
wood logs of specified lengths, while the latter trans-
ports logs out of the harvesting site – a working meth-
od known as cut-to-length. To perform this work, 
these machines use large hydraulic manipulators, 
known as cranes. To control these cranes, as well as 
the machine, operators use joysticks sitting inside the 
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cabins. The problem, however, is that a machine op-
erator sitting for an eight-hour shift faces a number of 
potential productivity-busters. One example is the 
complex coordination required to seamlessly produce 
the crane or vehicle motions using joystick commands. 
Precise control of the many crane links usually re-
quires a series of expertly coordinated actions that can 
prove tiring over time (Häggström and Lindroos 
2016). Today, the commercially available control tech-
nology is unintuitive to humans, because it involves 
controlling each cylinder of the machine separately. In 
view of this, machine manufacturers have started lean-
ing towards the idea of smart forestry machines as a 
technology that can tackle questions about increased 
productivity and efficiency, and go beyond the limita-
tion of human abilities (Lindroos et al. 2017).

An example technology related to automation of 
forestry machines is the computer-assisted support to 
operate cranes (Westerberg 2014). Technology of this 
kind involves using robotics software to help operating 
machines and has the objective to simplify the complex 
control related to operating forestry cranes, reaching 
an improved partnership between man and machine. 
For instance, joystick input commands such as up-
down and left-right are more intuitive to humans than 
controlling each cylinder separately. Along this line of 
technology, an example is what became known as the 
intelligent boom-tip control, a control software technol-
ogy where the operator controls directly the motions 
of the gripper or harvester head, instead of each cylin-
der – just like humans think about controlling their 
hands, rather than individually deciding how to move 
the elbow, shoulder, and wrist. In literature, there is an 
entire body of work addressing the development of 
boom-tip control methods. A comprehensive summary 
with the most advanced developments can be found in 
Westerberg (2014), and the references therein. In indus-
try, a basic boom-tip control software for forwarder 
and harvester machines are now part of the automation 
products of the company John Deere (International for-
est industries 2013). Additionally, there are plenty of 
smaller consultancy firms providing similar solution 
around Scandinavia (Technion 2017).

One of the problems in this line of work is that 
despite the amount of publications on the topic of up-
grading crane control via automation, there is no 
much information about the tools or methods involved 
in it, and what this technology could represent for for-
estry in general. In most publications, we find theo-
retical developments showing algorithms capable of 
doing tip-control, or some other automation features, 
but no explanations about the technologies that are 
relevant to physically implement said algorithms on 

machines. This information is important, because the 
fundamental technology of automation involves gath-
ering data using sensors and performing data analysis. 
Data analysis of crane motions has the potential to 
provide information to a larger set of applications in 
the forestry industry. Understanding the data ob-
tained from sensors is equally important as to under-
stand what features could be developed afterward. 
Therefore, the correlation of this statement with the 
title: What can we observe when we equip a forestry 
crane with motion sensors? results in understanding 
that there is more than just automation when using 
sensors in forestry machines.

1.1 Problem Formulation

1.1.1 Use of Motion Data in Forest Industry
In Nordic countries, most of the forestry operations 

are executed using forestry machines. Maneuvering 
the crane constitutes the major part of the work for a 
machine operator. Understanding how operators pro-
duce crane motions is an important step towards ad-
vanced automation, particularly because logging is a 
pick-and-place operation, which should involve mo-
notonous and repeatable motion patterns. Unlike the 
case of the intelligent boom-tip control described ear-
lier, advanced automation refers to the case when en-
tire pick-and-place log cycles are performed autono-
mously, but using human supervision. In robotics, 
motions to accomplish these tasks are often performed 
by imitating human recorded data.

In forestry itself, the usual method to analyze mo-
tion is by measuring the cycle times it takes to load 
trees. To this end, there are plenty of methods, ranging 
from manual (Nurminen et al. 2006), to automatic 
 (Palander et al. 2013). This information is used for 
various ends, such as comparing machine designs/
performance, comparing working methods, develop-
ing simulators, providing guidance to operators, or to 
plan forestry operations, just to mention some exam-
ples. The problem, however, is that time alone is not 
capable of providing sufficient information about 
movement, because motion is a dynamic phenomenon 
involving, as minimum, positions, velocity, accelera-
tion, and forces. Certainly, using time alone as a factor 
for making these various decisions cannot lead to op-
timal results, and it provides insufficient information 
for the development of automation technology.

1.1.2 Purpose of this Article
In view of this, the purpose of this article is to show 

the information obtained from motion sensors in for-
estry cranes, and show how this information can be 
used for analysis before taking steps towards automa-
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tion. The focus is placed on the work of forwarder 
operators, and three analyses are presented. Our first 
analysis follows a modern analytical method used to 
observe whether or not machine operators control 
cranes using monotonous and repetitive movements. 
The second analysis shows how sensor data can be 
used to track log positions. The third analysis shows 
how this information can be used to present some brief 
concepts of automation.

However, we would like to emphasize that the 
analysis we present is not extensive, because the pur-
pose is to highlight some of the key aspects of motion 
data analysis. Interested readers can find more com-
plete examples of how we have used similar data in 
the area of robotics (La Hera and Morales 2015), ma-
chine learning (Ortiz Morales et al. 2014), and auto-
matic analysis of human-operator performance 
 (Morales et al. 2015), which are research results that 
include other development cases.

2. Materials and Methods

2.1 Materials
2.1.1 Experimental Setup

The machine used in this study is a Komatsu For-
warder 830 (Komatsu Forest AB 2011). This machine 
uses a crane CRF 5.1 from CRANAB (Cranab AB 2016) 
with a maximum length of 9.3 m. The crane itself is 
equipped with a G28 grapple, which rotates via a G121 
hydraulic motor from Indexator (Indexator Rotator 
Systems 2011).

To gather data, we equipped the crane with motion 
sensors at every joint, i.e. four joints, as it is specified 
in Fig. 1. These sensors were installed externally, by 
adding static metallic holders in the frames of the 
joints. The sensors are quadrature encoders, a stan-
dard choice in the robotics and automation industry. 
The particular brand of these sensors is Heidenhain, 
with item number ROD 426−5000. They provide a 
measurement resolution of 5000 pulses per revolution, 
meaning that they can measure as low as 0.072 degrees 
(0.0012 rad) for the angular joints and 0.0007 m (0.7 mm) 
for the telescope. We also installed a real-time data 
acquisition unit (DAQ) able to record signals at a fre-
quency of 1 Khz (1000 recordings every second). The 
sensors and the DAQ work in parallel to the Komatsu 
system, meaning that they have no interference with 
the regular machine operation.

2.1.2 Operators and Terrain
The company Sveaskog (Sveaskog 2006) – the larg-

est forest owner in Sweden – provided help contacting 
machine operators for this study. The work took place 
in a clear-cut area, where the machine needs to collect 
logs from the forest to the road site. In the present text, 
the data of two operators are examined, because in re-
gards to automation there is no necessity for more to 
understand the actions of humans to operate a ma-
chine. According to research in haptic control, the pat-
terns – seen as the specific actions of the hands operat-
ing joysticks – to control machines become correlated 
among people (Srimathveeravalli et al. 2006), even 
though some operators seem to do it better than others. 
In the remaining article, the operators under the study 
are referred to as operator-Y and operator-O, corre-
sponding to younger (Y) and older (O). Between these 
operators, there is a difference of 15 years in experi-
ence. The younger operator had 5 years of experience.

2.1.3 Measurements and Operator’s Settings
To correctly characterize motion, data of both posi-

tions and velocities are needed. To express their mag-
nitude, international units are used in this article, i.e. 
joint angles in radians (rad), telescopic displacement 
in meters (m), and time in seconds (sec). Adopting the 
reference frame presented in Fig. 1, the measurement 
of joint motion can be defined by the vector of general-
ized coordinates , orderly denoting the slewing, inner 
boom, outer boom, and telescope. Similarly, a vector 
of generalized velocities can be defined as .

An important observation is that, in general mo-
tion, sensors are capable of measuring position , but 
not velocity . Therefore, velocities  are usually numer-
ically estimated from sampled position data  (Khalil 
2002). To this end, the method known as Algebraic-

Fig. 1 Forwarder crane; it is a hydraulic manipulator with four de-
grees of freedom, specified in this graph as the slewing, inner boom, 
outer boom, telescope; it holds an end-effector attached at the 
boom-tip, serving as a tool to grab logs, also called gripper; includ-
ing all electronic hardware, this particular experimental platform is 
the predecessor of a current commercial product of one of our 
companies (Cranab AB 2011)
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Derivative estimation was applied, as it is a very ro-
bust and modern method of numerical differentiation 
for sampled data in modern robotics (Mboup et al. 
2009). However, other approaches can provide similar 
estimation, as for example the standard Kalman filter 
(Belanger et al. 1998). In the case of automation, having 
information about velocity is perhaps more important 
than position data alone. For a forestry machine, ve-
locities give an indication of how the machine operator 
uses the joysticks to affect the cylinders’ velocities. The 
velocities also reveal software properties, in the sense 
that it shows what the software of the manufacturer 
might be doing to the joystick signals. All these will be 
explored later in the article.

2.2 Methods
The task of planning a collision-free trajectory from 

a start to a goal position is fundamental in the field of 
automation. Although motion planning has been ex-
tensively investigated since the beginning of robotics, 
there is neither a standard algorithm providing the 
best possible solution, nor an agreement on how to 
measure the performance of a computer generated 
motion. The problem lays in the redundancy of de-
grees of freedom, which allow an infinite number of 
motions to accomplish similar behavior. Therefore, 
whether a motion planner performs well or not is sub-
jective and depends on a variety of factors. These fac-
tors are related to the task for which the method is 
being used, and the performance metric applied in the 
motion planning algorithm.

Similarly, human operated machines for pick-and-
place actions fall in a similar category, where the hu-
man operator is the motion planner. In any industrial 
field, there are no exact rules as to how a human op-
erator should efficiently operate a machine. Forestry 
cranes, in particular, have endless ways to be con-
trolled, and there is no ideal way to assess the perfor-
mance of human operators from an engineering 
standpoint, or to draw comparisons against an ideal 
case. It is also not possible to seamlessly compare two 
machine operators, because they might be planning 
motions according to different criteria: one might be 
planning motions to work as fast as possible, while 
the second might be planning motions to work at op-
timal energy.

To learn how to operate a forestry machine, there 
are guidelines that instructors provide during school-
ing time. Nevertheless, over the years, machine op-
erators individually evolve to a level that they find 
sufficient to achieve satisfactory work. Later on, they 
repeat that method of work monotonously, because 
logging tasks do not vary largely. The guidelines pro-
vided by instructors involve two aspects: 1) How is 
the log-bunk positioned in relation to the logs, 2) How 
to use the crane links to achieve motion patterns lead-
ing to »what they believe« are energy efficient actions. 
Time efficiency is a result of properly coordinating 
these actions.

2.2.1 Log Bunk Positioning
Visualizing logs from a cabin is simple to the left 

and to the right of the machine. Therefore, the log-bunk 

Fig. 2 Left: driver’s view and machine placing with respect to the logs; Right: crane boom-tip motion patterns for grabbing and releasing 
trees; 1) Retracting path to the load bunk; 2) Expanding path from the load bunk (in these figures, the paths are drawn as examples to show 
the direction of the motion; usually the retracting path is higher than the expanding path, because the crane needs to avoid hitting the log-bunk 
when holding logs; the expanding path, however, can be much lower, because the crane can go back to the side crossing through the 
empty spaces between the log-bunk poles)
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is placed nearly perpendicular to the logs to reach op-
timal visibility, i.e. 90 degrees from the line of sight to 
the logs. This is represented by the Y-axis in the left of 
Fig. 2. The field of vision for the operator is obstructed 
in the direction of the log-bunk, i.e. the X-axis in the 
left of Fig. 2. Generally, the crane will attempt to grab 
logs located half distance to its maximum length, be-
cause this is when it has enough lifting force to move 
logs. For instance, if the length of our crane is 9.3 me-
ters in total, most of the grabbing action should happen 
between 4 to 6 meters from the machine.

To understand how machine operators position the 
machine with respect to logs, we can use data of the 
boom-tip position when it is grabbing logs. Mathemat-
ically, the boom-tip position (see Fig. 1) can be calcu-
lated from joint measurements (see the right of Fig. 2). 
Therefore, one of the most accurate methods for esti-
mating where the logs are grabbed is using joint sen-
sors data. Information of this kind is not available to-
day, but the ways to use such data in automation is 
relevant both for harvester and forwarder machines. 
For instance, this data enables the possibility to auto-
mate navigation (Ringdahl et al. 2011), automate the 
crane pick-and-place operation, perform highly accu-
rate automatic time studies, reconstruct the work in 
virtual environments, and perform automatic forest 
operation planning. A more complete explanation of 
the reasons why such data is important is given by 
Lindroos et al. (2015).

Since we do not use a GPS system, our work will 
be limited to show the log positions with respect to the 
machine, despite the fact that the machine moves from 
place to place to pick up logs.

2.2.2 Crane Motion Patterns
Four different motion patterns are recognized for 

loading and unloading logs. Considering the sketch in 
the right of Fig. 2, these motions are defined by the 
traveling of the boom-tip for expanding or retracting 
the crane, occurring either to the right or to the left of 
the vehicle.

Despite the simplicity of these movements, the real 
operator skill consists in synchronizing the indepen-
dent boom joint movements presented in Fig. 1. How-
ever, performing this type of coordination is difficult, 
because for a given path (see the right of Fig. 2), there 
is not one, but infinite ways to synchronize the joints, 
all leading to similar behavior. Additionally, a given 
task can be accomplished with many different paths, 
speeds, accelerations, energy levels, etc. From all these 
possibilities, a machine operator must choose an ap-
propriate, comfortable, and profitable way to perform 
such actions.

Here, our interest is to determine from data the 
repeatable motion patterns that cranes undergo dur-
ing a working task. Finding repeatable motions can 
help assess the feasibility to automate this system. It is 
believed that, for a given machine operator, forward-
ing tasks follow monotonous pick-and-place actions, 
which happen through variations of similar crane mo-
tions, especially after some years of practice. These 
pick-and-place actions are the result of coordinating 
the crane motions, which should also be somewhat 
similar among operators.

In this article, the method to find repeatable mo-
tions involves trimming the data of joint positions ac-
cording to the actions of expanding or retracting the 
crane (see the right of Fig. 2). Consequently, our meth-
od involves reparametrizing trajectories according to 
a monotonic increasing variable o than time. The rea-
son to reparametrize data is because extracting the 
motions 1 and 2, shown in Fig. 2, usually leads to un-
uniformed data with different time, length, and so on. 
Data of this kind looks messy and does not provide 
information that is simple to understand, as we will 
see later. However, reparametrizing data allows its 
normalization in order to get deeper insight into what 
is truly happening. Normalization is standard in the 
fields of robotics and machine learning, and it is used 
to better interpret data. The normalized data also ease 
the ability to observe whether or not two different ma-
chine operators are handling the work nearly simi-
larly, as should be the case. This fact cannot be easily 
determined from normal time data.

2.2.3 Effects of Driver’s Settings in Crane  
Performance

It has been indicated above that joystick signals 
are somewhat correlated to the velocities of the joints. 
Thus, joint velocities indicate how machine operators 
are using the joysticks. In relation to this, the settings 
defined by operators when working with these ma-
chines are a very important factor. To understand 
this, a task of controlling a forestry crane using joy-
sticks should be considered. The joysticks must be 
moved to coordinate the crane and pick-and-place 
logs from the ground to the log-bunk in the machine. 
Moving the crane, however, is a difficult task for the 
hydraulic system. The crane is heavy and becomes 
heavier when holding logs. To produce motion, the 
cylinders need to push oil and produce great forces 
as soon as you start using the joysticks. However, this 
hydraulic process, and the speed at which it happens, 
causes oscillations that propagate from the cylinders 
to the whole machine, causing the crane and machine 
to bounce unwantedly. This causes two problems. 
First, there is a safety concern that the gripper might 
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oscillate uncontrollably and hit the crane or other 
trees. Secondly, if the crane is freely bouncing, it is 
difficult to position the gripper and logs effectively, 
thus affecting time-performance. In addition, oscilla-
tions are generally bad for the human body 
(Häggström et al. 2016), and the durability of the ma-
chine.

The reasons for these oscillations have to do with 
physics. On one hand, when the crane moves, it ex-
erts unwanted accelerations to the gripper, which 
hangs like a free pendulum. On the other hand, the 
hydraulic oil compresses with the movement, mak-
ing cylinders behave similar to springs (Manring 
2005). To tackle this problem, companies provide 
software restricting both the amplitude and the speed 
of the joystick signals. The settings for these are pro-
vided to operators as part of a user interface in the 
machine computer. Thus, to reduce oscillations, first 
operators set how fast each cylinder will move ac-
cording to the amplitude of the joysticks. Setting 
these limitations makes the machine perform much 
slower of what it is capable of doing, but in good 
relation to velocities that humans can handle. Sec-
ondly, operators define filter profiles for the joysticks 
to smoothly initiate and stop each cylinder motion. 
Defining appropriate settings is a task that can take 
years of trial and error to do well. On the other hand, 
these settings are operator dependent, and therefore, 
estimating the machine production and operator’s 
efficiency becomes a very difficult task, because the 
control systems are heavily involved in the motion. 
As the settings are an important item in motion per-
formance, its influence will be presented in section 3.

To give an idea of the crane limitations, Table 1 
shows the limits of the joints, both in terms of angu-
lar position and velocity. The limitations in position 
are due to the cylinder maximum range. The values 
for velocities correspond to the maximum velocities 
cylinders are physically able to reach before opera-
tors define any settings. The velocity of the cylinder 
is allocated to how fast the hydraulic system is able 
to provide oil flow.

3. Results
The aim of this section is to present:
Þ  how the operator positions the log-bunk for 

grabbing logs
Þ  the crane motion patterns for performing the 

work
Þ  the effects of computer settings on these motions
Þ  a procedure to plan motions for the case of au-

tomation.
The data presented below corresponds to nearly 

9000 observations for each machine operator, i.e. 9000 
motions of pick-and-place logs. The figures, however, 
do not illustrate all of them, because they become dif-
ficult to visualize. Nevertheless, all calculations use the 
entire data sets.

3.1 Log Bunk Positioning
Fig. 3 shows an example of reconstructing motions 

of the crane in Cartesian Space (world coordinates) 
using a virtual simulator. As explained in section 2, to 
extract these motions, software was developed that 
automatically trims the recorded joint data. Conse-
quently, the Cartesian motions were mathematically 
calculated using this data and the equations of the 
crane forward kinematics (Spong et al. 2006).

Reconstructing motions in Cartesian space allows 
calculating the coordinates where operators collected 
logs. This reconstruction is presented in Fig. 4, which 
shows how operators position the machine with re-
spect to the logs they collect. The dots in Fig. 4 are the 

Table 1 Limits on joint positions and velocities

Link Min. position Max. position Min. velocity Max. velocity

1 –3 rad 3 rad –0.8 rad/s 0.8 rad/s

2 –0.4 rad 1.5 rad –0.5 rad/s 0.5 rad/s

3 –3 rad –0.15 rad –0.8 rad/s 0.8 rad/s

4 0 m 3.5 m –1.2 m/s 1.2 m/s

Fig. 3 Example of paths the boom-tip of the crane performs during 
work; this data was reconstructed using the recorded motion and 
additional formulas of forward kinematics, which interested readers 
can find readily available in (Mettin et al. 2009)
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locations of the logs operators grabbed in different 
parts of the forest, but lumped in a single plot. As ex-
plained earlier, our machine is not equipped with GPS 
data to reconstruct the entire working scenario. Our 
interest is focused on the work with the crane and, 
therefore, the current data is sufficient for the purpose 
of this study. Other studies have shown how GPS data 
could be used for these purposes (Olivera et al. 2016). 
Nevertheless, locating the position of a system off-
road is still a challenging subject in the field of robot-
ics, requiring the combination of different technolo-
gies other than GPS.

3.2 Crane Motion Patterns
As observed in Fig. 2, two scenarios dominate the 

data: (1) the crane patterns to reach logs, and (2) the 
patterns to bring those logs back to the log-bunk. To 
show how this data looks like, we have developed a 
procedure to trim the data according to these actions. 
The parametrization explained in section 2 is done by 
using the boom-tip path curve length (see Fig. 2), since 
it is the only variable that monotonically increases or 
decreases along the motion. The curve length is found 
according to:

 ( )
b

2 2 2

a

t   L x y z dt= + +ò   

  (1)

Where the values for (x, y, z) can be numerically 
estimated from the Cartesian motions shown in Fig. 3. 
Since the curve length also varies according to indi-
vidual motions, can be further normalized into a uni-
ty variable ranging from 0 to 1. To this end, a unity 
length reparametrization variable was proposed as:

 
( )

( )
 

f

L t

L t
q =   (2)

Where  points the last value of the curve length. To 
visualize both the standard trajectories and parame-
trized trajectories, the motions happening to the left of 
the vehicle are presented below.

3.2.1 Independent Boom Joint Trajectory Patterns 
for Expanding the Crane-tip

Fig. 5 and Fig. 6 show the trajectories of the inde-
pendent boom joints for operator-Y and O correspond-
ingly. In both cases, the left of these figures shows the 
independent joint trajectories after trimming the data. 
The right side of these figures shows the reparame-
trized version of the same data.

3.2.2 Independent Boom Joint Trajectory Patterns 
for Retracting the Crane-tip

Fig. 7 and Fig. 8 show the trajectories of the indepen-
dent boom joints for operator-Y and O correspondingly. 

Fig. 4 Top view of the machine; the black dots represent the logs on level ground; the reference frame is centered as shown in Fig. 1; the 
positive y-axis represents the left side of the field of vision; the light gray area represents the coordinates that the crane can reach from its 
minimum to its maximum range (see Table 1); the dark gray area points to the coordinates that are unfeasible to reach; the gray rectangle 
represents the log bunk, with the cabin pointing to the left
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Fig. 5 Each of these plots refers to one joint in the crane (see Fig. 1); the final motion is for expanding the crane to reach logs to the left of the 
vehicle; this data is for the operator with less years of experience; the plots in the left side represent the joint motions with respect to time; the 
plots in the right side represent the joint motions with respect to the normalization variable ; this plot shows 200 data sets out of nearly 9000
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Fig. 6 Each of these plots refers to one joint in the crane (see Fig. 1); the final motion is for expanding the crane to reach logs to the left of the 
vehicle; this data is for the operator with more years of experience; the plots in the left side represent the joint motions with respect to time; the 
plots in the right side represent the joint motions with respect to the normalization variable ; this plot shows 150 data sets out of nearly 9000
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Fig. 7 Retracting motions from the left; crane independent boom joint movements for the operator with less years of experience; the plots 
in the left side represent the joint motions with respect to time; the plots in the right side represent the joint motions with respect to the 
normalization variable ; this plot shows 200 data sets out of nearly 9000
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Fig. 8 Retracting motions from the left; crane independent boom joint movements for the operator with more years of experience; the plots 
in the left side represent the joint motions with respect to time; the plots in the right side represent the joint motions with respect to the 
normalization variable ; this plot shows 150 data sets out of nearly 9000
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Fig. 9 Expanding motions to the left; crane independent boom joint velocities for the driver with less years of experience; the plots in the left 
side represent the joint velocities with respect to time; the plots in the right side represent the joint motions with respect to the normalization 
variable ; this plot shows 300 data sets out of nearly 9000
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Fig. 10 Expanding motions to the left; crane independent boom joint velocities for the driver with more years of experience; the plots in the 
left side represent the joint velocities with respect to time; the plots in the right side represent the joint motions with respect to the normal-
ization variable ; this plot shows 150 data sets out of nearly 9000
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Fig. 11 Trajectories planned according to fifth order polynomial functions for expanding motions to the left; plots on the left are position 
trajectories, whereas velocity profiles are plotted on the right
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Fig. 12 Trajectories planned according to fifth order polynomial functions for retracting the crane from the left; figures on the left are position 
trajectories, whereas the velocity profiles are plotted on the right
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In both cases, the left of these figures shows the inde-
pendent joint trajectories after trimming the data. The 
right side of these figures shows the reparametrized 
version of the same data.

3.3 Crane Velocities Showing the Effects of 
Driver’s Settings

Fig. 9 and Fig. 10 show the joint velocities of the 
independent boom joints for operator-Y and O corre-
spondingly. In both cases, the left of these figures 
shows the independent joint velocities after trimming 
the data. The right side of these figures shows the re-
parametrized version of the same data.

The normalized velocities show a clearer picture of 
the neighborhood where most of the velocity action 
takes place in both cases. An average of the maximum 
velocities that each degree of freedom undergoes dur-
ing motions is shown in Table 2. This maximum aver-
age velocity refers to the highest peak (in case of posi-
tive) or lowest peak (in case of negative) of the bell 
shape-like trajectories observed in Fig. 9 and Fig. 10. 
Consequently, a calculation of the standard deviation 
from these values is also given in the last two columns 
of Table 2.

Table 2 shows that both operators use the joints ,  
and  in the neighborhood of similar maximum veloci-
ties. This can also be verified observing Fig. 9 and Fig. 
10, because most of the velocity action happens in a 
neighborhood of the same region. However, there is a 
difference in the values for . Table 2 also helps reveal-
ing at what percentage of the maximum machine ve-
locity our particular operators feel comfortable operat-
ing the machine. Table 3 presents an estimation of 
these quantities, by calculating the ratio between the 
second column, with the third and fourth column of 
Table 2.

A final calculation is to show the percentage of ve-
locity that machine operators use in relation to what 
the machine is able to achieve. This is calculated by the 
ratio between the second column with the third and 
fourth columns of Table 2. This ratio represents the 

level of velocity amplitude that machine operators feel 
comfortable using when they work with this machine. 
The result of such a calculation is presented in Table 3.

Table 3 Percentage from the maximum velocity that operators use 
at each link

Link Operator-Y, % Operator-O, %

1 25 27

2 24 22

3 31 19

4 4 8

3.4 Using Computer Software for Planning 
Similar Trajectories

In industrial robotics, using parametric polyno-
mial functions is one of the many methods used for 
planning robot trajectories. Polynomials help defining 
a trajectory from an initial to a final state, while con-
sidering specific position, velocity, and acceleration 
profiles. To represent the motions of machine opera-
tors, the example of a fifth order parametric polyno-
mial can be used:

( ) ( ) ( ) ( ) ( )5 4 3 2
5 4 3 2 1 0 t  t  t  t  tq a a a a a aq q q q q= + + + + +  (3)

Such polynomial is standard in industrial software 
for defining motions in robotic mechanisms (Spong et 
al. 2006). In (3), the coefficients  encode the motion 
patterns by considering the initial and final positions 
for the motion, as well as the maximum velocities and 
accelerations intended. To define the time duration of 
the motion, the variable  can be defined in terms of 
time:

 3 2
3 2 1 0   b t b t b t bq = + + +  (4)

Defining the coefficients  will define the speed of 
motion. For the cases shown in Fig. 5 and Fig. 6, a 

Table 2 Averaged maximum velocities and standard deviation calculated for each operator at each individual joint

Link 
Machine feasible 

maximum velocities
Average Maximum 

velocity for Operator-Y
Average Maximum 

velocity for Operator-O
Units

Standard deviation 
Operator-Y

Standard deviation 
Operator-O

1 0.8 0.1969 0.22 rad/sec 0.0431 0.0282

2 0.5 0.1130 0.1130 rad/sec 0.0418 0.0463

3 0.8 0.2026 0.1566 rad/sec 0.0763 0.0506

4 1.2 0.0971 0.0999 m/sec 0.1075 0.0441
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computer generated approximation of the averaged 
data sets is shown in Fig. 11, i.e. the average of the 
trajectories in each case. For the case of retracting the 
crane, as shown in Fig. 7 and Fig. 8, a computer recon-
struction encoding the average characteristics is pre-
sented in Fig. 12.

4. Discussion
Nowadays, analyzing the work of machine opera-

tors is done by measuring time cycles, because the 
volume of production per hour is an important metric 
to industry. However, if we were to use time alone for 
developing solutions in the areas of automation, op-
erator training, real-time data analysis, or any other 
technological development, this metric would not be 
suitable to fulfil these goals. Time alone is a variable 
providing insufficient information to characterize mo-
tion.

Particularly for us, the overall aim of understand-
ing how humans generate motions when they work 
with machines is to use this information for getting 
insights into the possibilities to develop advanced au-
tomation to facilitate the work of operators. One meth-
od to use this information is to develop autonomous 
crane capabilities, where computer generated motions 
are imitation of what humans perform. As it is com-
mon in the field of robotics, imitating what humans 
do often leads to faster development than developing 
complex motion planning algorithms. This is one of 
the main reasons why areas such as machine learning 
and deep learning are speeding up the process of de-
veloping automation.

However, there are important aspects to highlight 
before proceeding with our discussions. The first as-
pect consists of comparing machine operators. As ex-
plained in section 2.2.1, it is mathematically incorrect 
to compare two different trajectory planning algo-
rithms, unless these algorithms are designed to fulfill 
similar performance criteria. Similarly, comparing the 
trajectories of two operators is a mathematically ill 
problem, unless it is certain that these operators are 
aiming for similar performance criteria. Therefore, this 
will not be the subject of this article. A second aspect 
refers to assessing the work of an operator. As ex-
plained in section 2.2.1, machines in general do not 
have an ideal way to be manually controlled, and in 
the absence of an ideal situation, it is mathematically 
impossible to state how good an operator is working. 
Nevertheless, an assessment in this matter can be 
drawn according to how consistent a machine opera-
tor repeats pick-and-place motions according to his 
own ability. Additionally, it is possible to assess how 

much faster an autonomous system would be able to 
work in relation to this person for the case of achieving 
time-optimal motions. These kinds of motions, how-
ever, are not energy optimal, and this is the main rea-
son why we believe that human operators perform 
mentally a multi-criteria optimization, even though 
they are not aware of this fact. Given these explana-
tions, our findings are further discussed.

4.1 Log Bunk Positioning
Fig. 4 and Fig. 5 present a reconstruction of the 

crane motions in Cartesian space. A calculation of this 
kind helps finding the locations where logs are 
grabbed on the ground, giving a direct view of how 
machine operators position the machine with respect 
to their work. In section 2, we explained that machine 
operators are usually instructed to keep the machine 
perpendicular to the logs, and maintain a working 
range near half the total distance of the crane to pre-
serve potential energy. Calculating the average dis-
tance of the crane-tip position becomes readily avail-
able when using the data of the log locations. In 
average, the operators in this study use the crane in an 
average distance range of 5.33 (m), as may be visual-
ized in Fig. 4. Considering that the total range of the 
crane is 9 meters, this value goes into agreement with 
what we would be expecting, and it gives a valuable 
range that can be used in automation software for 
planning motions according to human data (Ortiz 
 Morales et al. 2014). It is also observed that both ma-
chine operators place the machine mostly perpendicu-
lar to the logs at all times, although with some slight 
variations.

In several articles, e.g. (Lindroos et al. 2017, Lindroos 
et al. 2015), researchers explain how measuring the tip 
position will enable other areas of automation to come 
forward. An immediate application of this result is the 
possibility to develop highly accurate automatic time 
studies. This interest comes from authors, such as 
 (Palander et al. 2013), who use the machine computer 
data to this end. However, computer data without 
sensing technology is neither reliable, nor accurate, 
because the computers of current commercial ma-
chines do not have any information about the motion 
of the crane.

Apart from the above, there are other areas in robot-
ics where measuring the tip position becomes impor-
tant. For instance, autonomous driving and fully au-
tonomous crane control using cameras for recognizing 
the logs on the ground. To enable these possibilities, 
however, more advances in the areas of machine loca-
tion and computer vision are needed, as the current 
technology using GPS or systems of such kind are in-
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sufficient in outdoor applications. Having robotic sys-
tems moving in the outside world is currently a diffi-
cult topic in the robotics community. Nevertheless, 
having measurements of crane-tip positions and log 
locations is one of the first steps to achieve these goals.

4.2 Crane Motion Patterns
For the task of commanding crane motions, two 

patterns fairly well summarize the entire pick-and-
place operation. These are the motions to approach 
logs, and the ones to bring logs back to the machine. 
Along this article, these motions have been named as 
the expanding and retracting motions, as these are the 
operations the crane undergoes to accomplish them. 
Our particular interest has been to observe the extent 
at which operators consistently repeat the same motion 
patterns, and how these patterns look like if they exist.

The reconstruction of motion in Cartesian coordi-
nates, shown in Fig. 4, gives already an indication that 
there are repeatable patterns for pick-and-place ac-
tions. More specifically, the individual joint trajecto-
ries, plotted in Fig. 5 to Fig. 8, follow very specific pat-
terns. To show these patterns clearer, we have used the 
method of re-parametrization, as it is standard in data 
analytics for robotics. Results of reparametrizing these 
trajectories can be observed in the right of Fig. 5 to Fig. 
8. The reparametrized trajectories show a clear bound-
ary where the individual joints perform motion. Hav-
ing this information is important for the tasks of auto-
mation, as it helps understanding that operating 
forestry machines follows a sequence of repeatable 
patterns that can be automated, and the boundaries of 
how this automation can be done. Although the tasks 
of autonomously identifying and grabbing logs pres-
ent many challenges today, having automated mo-
tions for portions of the work, as shown in Fig. 5 to Fig. 
8, represent an initial step towards achieving autono-
mous logging. This scenario of partial automation has 
formerly been discussed in many articles, e.g. (Ortiz 
Morales et al. 2014), but to the best of our knowledge, 
the present article is the first showing the data sup-
porting such claims.

Another important observation is how data from 
Fig. 5 to Fig. 8 can be used in the context of machine 
learning and/or optimization. Considering optimiza-
tion, one of the main tasks is to use performance crite-
ria to optimize a given problem. To this end, suitable 
performance criteria for forestry cranes would involve 
minimizing the way motions consume the machine 
energy. In such a case, optimizing mechanical work is 
a quantity that is often used in robotics, and correlated 
to the energy expenditure in a given system. For for-
estry cranes, optimization can be achieved by optimiz-

ing the telescopic joint motion  because it is the redun-
dant link that can lead to different solutions (Spong et 
al. 2006). To verify this statement, it can be observed 
in Fig. 5 to Fig. 8 that the joint operators are using dif-
ferently exactly the telescopic link , leading to small 
variations in how they perform in general. However, 
computer optimization can be developed to find a bet-
ter solution to what is observed in these figures, and 
data of this kind can be used to train new machine 
operators, or to improve the operators work. In fact, 
currently no teaching is provided to machine opera-
tors according to optimal motion methods and, there-
fore, much of how operators perform nowadays is a 
matter of trial-and-error practice in the field. Unfortu-
nately, calculating the energy consumed during mo-
tion falls out of the scope of the present article, because 
measuring energy requires extra set of sensors. Nev-
ertheless, some preliminary work along these concepts 
can be found in literature (Morales et al. 2015).

Considering machine learning, one of the main 
problems consists in training a mathematical model to 
deliver similar output as a given system. To this end, 
the mathematical model is said to be trained according 
to data, meaning that the model is tuned to follow the 
measured data of a real process. In robotics, training 
a system according to human generated data is called 
»learning by demonstration«, and it is becoming one 
of the most applied methods to plan motions for un-
structured and difficult environments. In forestry ma-
chines, having data of human operators opens a huge 
possibility to fully automate the working cycles of the 
machine, and apply optimization on top of this. The 
main problem is that planning every single motion of 
the crane via standard industrial robotics methods is 
unfeasible, because it would involve a tedious and 
slow process. However, training a computer system 
according to how humans operate machines opens up 
larger possibilities. All these are only some examples 
of the reasons why so much time is dedicated to ana-
lyze human motion data.

4.3 Crane Velocities Showing the Effects of 
Driver’s Settings

In section 2.2.2, we explained how oscillations 
negatively influence the work of machine operators. 
For safety and to avoid oscillations, machine manufac-
turers usually use software to reduce the velocities 
allowed to cylinders. Thus, operators can use only a 
portion of the maximum velocities. Table 1 and Table 
2 show the maximum velocities that each link is ca-
pable of performing when no software has been added 
to the machine. Afterwards, the reduction from fac-
tory value is usually 70% of the values shown in these 
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tables. On top of this, machine operators individually 
set their own preferences. The problem of automation 
is to understand the range of velocities that seem com-
fortable for machine operators, which is most likely 
preset in the machine settings.

Table 3 shows that, in average, machine operators 
are capable of using 20% of the maximum velocity. 
Fig. 9 and Fig. 10 show that the main difference be-
tween operators lies in how they control the outer 
boom link . However, despite the differences, both 
operators show working cycles of nearly similar time. 
Morales et al. (2015) explained how the work with for-
estry cranes could be speeded up using automation 
software. According to Morales et al. (2015), time-effi-
ciency could increase by at least three-fold if done by 
an autonomous control system. The reason for this 
claim, as shown in Table 4, has to do with the fact that 
machine operators – and humans in general – are not 
able to work quickly in multitasking problems. If ma-
chine operators use only an average of 20% of the ma-
chine ability, then that leaves plenty of room to attain 
time-optimal motions.

However, achieving faster motion is not only a 
problem of planning faster motions, but also a problem 
of whether or not the hydraulic system is capable of 
controlling the machine smoothly. Smartly controlling 
the hydraulic system is an area of intelligent hydraulic 
control systems, and this is a young area of develop-
ment. Nevertheless, some initial hardware products 
are appearing in the market that could facilitate the 
development of intelligent hydraulic control. Some 
initial products featuring applications of this kind of 
hardware are the John Deere Smooth Boom Control 
(John Deere 2012), and Komatsu’s Smart Flow  (Morales 
et al. 2015). Development of intelligent hydraulics 
 represents a stepping stone towards automation of 
crane motions (La Hera and Morales 2015).

A second reason to understand velocities has to do 
with how machine operators define setting in the ma-
chine user interface. The 20% value explained above 
gives an indication of how operators preset the settings 
in the main computer. Additionally, an important ob-
servation in Fig. 9 and Fig. 10 is that the velocity pro-
files follow a near bell shape function. These bell shape 
functions are the result of software filters that operators 
also need to preset to work smoothly. The problem 
with settings is that defining them to properly operate 
a machine is a task involving long trial-and-errors, and 
it can take beginner operators years to do well. Effi-
ciency of machine operators would greatly benefit 
from software that can automatically define settings 
according to sensor data. Therefore, a new method to 
automatically define settings according to crane 

smoothness and to operate the machine has been pre-
sented in Morales et al. (2015).

A final observation provided as an attempt to quan-
tify the performance of an operator is related to repeat-
ability. This is an idea derived from industrial robotics, 
where accuracy and repeatability are two characteris-
tics used to measure the efficiency of robot motion. In 
simple words, repeatability is doing the same task over 
and over again at a consistent tempo, while accuracy 
is hitting your target each time with minimum error. 
Forestry cranes that pick-and-place logs follow similar 
characteristics. The difference, however, is that indus-
trial robots are often programmed to reach a single 
specific target over and over, while forestry cranes 
pick-and-place logs at different places each time. Thus, 
accuracy is not a characteristic that can be used in for-
estry cranes. Repeatability, on the other hand, has to 
do with moving the robot at a similar tempo over and 
over. An indication of this characteristic is given by 
velocity. If the velocity sequences have small variations 
at each motion, then they indicate a form of repeat-
ability. To this end, the maximum velocities of each 
cylinder can be calculated at each consecutive motion 
(see Fig. 9 and Fig. 10). The variations from the maxi-
mum velocity indicate the level of repetition in each 
sequence. The last two columns of Table 2 show such 
values, which are determined by the standard devia-
tion. If these two operators were compared according 
to this characteristic, it would be concluded that 

Fig. 13 Radar chart showing the repeatability of each operator 
according to the standard deviation of their maximum velocities; 
this chart is based on data given in Table 4
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 operator-O has better repeatability patterns in his way 
to control the crane, because his standard deviations 
have smaller values compared to operator-Y. A graph-
ical representation showing a clearer indication of this 
concept is given in Fig. 13.

4.4 Using Computer Software for Planning 
Similar Trajectories

Observing data for pick-and-place log operations, 
particularly the right plots of Fig. 6 to Fig. 9, it can be 
seen that the joint motions highly resemble repeatable 
patterns. It was mentioned in section 4.2 that data of 
this kind can be used for various ends with regards to 
automation. As an example, section 3.4 shows a case of 
using parametric polynomials that were tuned to 
match the average data of each operator. Results of the 
performance of these polynomials are presented in Fig. 
11 and Fig. 12. These polynomials are standard in in-
dustrial robotics, and they can be used to automate 
portions of the work; for instance, retracting the crane 
back to the log bunk, once it has grabbed logs. Ortiz 
Morales et al. (2014) and Hansson and Servin (2010) 
presented experimental tests with such a development. 
Automated motions could be applied directly to a new 
form of user interfaces, and machine operators could 
control the crane just by touching a screen or pressing 
a button. To give an idea, Fig. 14 shows a computer 3D 
user interface to various log locations. The locations are 
chosen according to results presented in Fig. 4.

Nevertheless, it is a challenging problem to fully 
automate logging operations, because technology that 
is undergoing research is required to successfully au-
tomate these operations; for instance, recognizing 
logs in the ground (Westerberg 2014), navigating the 

vehicle throughout the forest (Ringdahl et al. 2011), 
and autonomously plan crane motions according to 
different tasks (Ortiz Morales et al. 2014). Although 
there are laboratory results along these lines, these 
developments are far from being successful in real 
world conditions.

On the other hand, developments in the areas of 
motion optimization and machine learning for for-
estry cranes show potential to improve operators 
training and efficiency. Machine learning, also known 
as robot programming by demonstration, is a power-
ful tool to plan motions by imitation, rather than care-
fully tuning polynomials as presented in this article. 
Using such technology, not only to automate the work, 
but also as a new learning mechanism for beginners, 
draws the interest of industry.

5. Conclusions
Data were presented to explore how operators of 

forestry machines work with cranes. The main objec-
tive was to observe the trajectories operators generate 
for each degree of freedom. To this end, we equipped 
a forwarder crane with motion sensors and recorded 
human generated motions when operators were work-
ing. Analyzing this data helped unveil many charac-
teristics that are not obvious without sensing hard-
ware. For example, how operators position the 
machine, how operators command motions, how 
good they are at multitasking, and even, how motion 
trajectories look like, or how operators settings influ-
ence the crane motion. As sensing technology is start-
ing to appear in the forestry market, it can be expected 
that in coming years motion data analysis will be im-
portant to optimize work efficiency and to develop 
technological innovations. Therefore, our results can-
not be used as final conclusions. On the contrary, they 
can be used to initially understand what motion sensing 
technology shows, to consequently propose solutions 
to improve operator’s work, or to develope automation 
features. Our former articles are a comple ment to these 
objectives.

An improvement of our solution will be to study 
motions from a dynamic point of view, involving sen-
sors to measure hydraulic dynamics. Dynamics of mo-
tion is used to analyze overall energy, and this form of 
data will be useful to give the first suggestions of how 
machine operators should be instructed to truly opti-
mize energy efficiency. Similarly, analyzing energy 
will open the possibility to show the performance of 
machine operators in the mathematical sense, to com-
plement what was presented in Fig.13. This will be the 
topic of another article.

Fig. 14 Cartesian boom-tip paths achievable by a computer via 
trajectory planning algorithms
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